MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ii Structured version   Visualization version   GIF version

Definition df-ii 24777
Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
df-ii II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 24775 . 2 class II
2 cabs 15207 . . . . 5 class abs
3 cmin 11412 . . . . 5 class
42, 3ccom 5645 . . . 4 class (abs ∘ − )
5 cc0 11075 . . . . . 6 class 0
6 c1 11076 . . . . . 6 class 1
7 cicc 13316 . . . . . 6 class [,]
85, 6, 7co 7390 . . . . 5 class (0[,]1)
98, 8cxp 5639 . . . 4 class ((0[,]1) × (0[,]1))
104, 9cres 5643 . . 3 class ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
11 cmopn 21261 . . 3 class MetOpen
1210, 11cfv 6514 . 2 class (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
131, 12wceq 1540 1 wff II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
Colors of variables: wff setvar class
This definition is referenced by:  iitopon  24779  dfii2  24782  dfii3  24783  lebnumii  24872
  Copyright terms: Public domain W3C validator