Detailed syntax breakdown of Definition df-ii
Step | Hyp | Ref
| Expression |
1 | | cii 24914 |
. 2
class
II |
2 | | cabs 15269 |
. . . . 5
class
abs |
3 | | cmin 11489 |
. . . . 5
class
− |
4 | 2, 3 | ccom 5692 |
. . . 4
class (abs
∘ − ) |
5 | | cc0 11152 |
. . . . . 6
class
0 |
6 | | c1 11153 |
. . . . . 6
class
1 |
7 | | cicc 13386 |
. . . . . 6
class
[,] |
8 | 5, 6, 7 | co 7430 |
. . . . 5
class
(0[,]1) |
9 | 8, 8 | cxp 5686 |
. . . 4
class ((0[,]1)
× (0[,]1)) |
10 | 4, 9 | cres 5690 |
. . 3
class ((abs
∘ − ) ↾ ((0[,]1) × (0[,]1))) |
11 | | cmopn 21371 |
. . 3
class
MetOpen |
12 | 10, 11 | cfv 6562 |
. 2
class
(MetOpen‘((abs ∘ − ) ↾ ((0[,]1) ×
(0[,]1)))) |
13 | 1, 12 | wceq 1536 |
1
wff II =
(MetOpen‘((abs ∘ − ) ↾ ((0[,]1) ×
(0[,]1)))) |