| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfii3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| dfii3.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| dfii3 | ⊢ II = (𝐽 ↾t (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnxmet 24667 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 2 | unitssre 13467 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 3 | ax-resscn 11132 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 4 | 2, 3 | sstri 3959 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
| 5 | eqid 2730 | . . . 4 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) | |
| 6 | dfii3.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 7 | 6 | cnfldtopn 24676 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 8 | df-ii 24777 | . . . 4 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
| 9 | 5, 7, 8 | metrest 24419 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → (𝐽 ↾t (0[,]1)) = II) |
| 10 | 1, 4, 9 | mp2an 692 | . 2 ⊢ (𝐽 ↾t (0[,]1)) = II |
| 11 | 10 | eqcomi 2739 | 1 ⊢ II = (𝐽 ↾t (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 − cmin 11412 [,]cicc 13316 abscabs 15207 ↾t crest 17390 TopOpenctopn 17391 ∞Metcxmet 21256 ℂfldccnfld 21271 IIcii 24775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-bases 22840 df-ii 24777 |
| This theorem is referenced by: dfii4 24784 iimulcn 24841 iimulcnOLD 24842 icchmeo 24845 icchmeoOLD 24846 reparphti 24903 reparphtiOLD 24904 cvxpconn 35236 cvxsconn 35237 |
| Copyright terms: Public domain | W3C validator |