![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version |
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnxmet 24640 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
2 | unitssre 13479 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
3 | ax-resscn 11166 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | 2, 3 | sstri 3986 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
5 | xmetres2 24218 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
6 | 1, 4, 5 | mp2an 689 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
7 | df-ii 24748 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
8 | 7 | mopntopon 24296 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ⊆ wss 3943 × cxp 5667 ↾ cres 5671 ∘ ccom 5673 ‘cfv 6536 (class class class)co 7404 ℂcc 11107 ℝcr 11108 0cc0 11109 1c1 11110 − cmin 11445 [,]cicc 13330 abscabs 15185 ∞Metcxmet 21221 TopOnctopon 22763 IIcii 24746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-icc 13334 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-topgen 17396 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-top 22747 df-topon 22764 df-bases 22800 df-ii 24748 |
This theorem is referenced by: iitop 24751 iiuni 24752 icchmeo 24816 icchmeoOLD 24817 htpycom 24853 htpyid 24854 htpyco1 24855 htpyco2 24856 htpycc 24857 phtpycn 24860 phtpy01 24862 isphtpy2d 24864 phtpycom 24865 phtpyid 24866 phtpyco2 24867 phtpycc 24868 reparphti 24874 reparphtiOLD 24875 pcocn 24895 pcohtpylem 24897 pcoptcl 24899 pcopt 24900 pcopt2 24901 pcoass 24902 pcorevcl 24903 pcorevlem 24904 pi1xfrf 24931 pi1xfr 24933 pi1xfrcnvlem 24934 pi1xfrcnv 24935 pi1cof 24937 pi1coghm 24939 xrge0pluscn 33450 ptpconn 34752 indispconn 34753 connpconn 34754 txsconnlem 34759 txsconn 34760 cvxsconn 34762 cvmliftlem8 34811 cvmlift2lem2 34823 cvmlift2lem3 34824 cvmlift2lem6 34827 cvmlift2lem9 34830 cvmlift2lem11 34832 cvmlift2lem12 34833 cvmliftphtlem 34836 cvmlift3lem6 34843 cvmlift3lem9 34846 |
Copyright terms: Public domain | W3C validator |