![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version |
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnxmet 24288 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
2 | unitssre 13475 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
3 | ax-resscn 11166 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | 2, 3 | sstri 3991 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
5 | xmetres2 23866 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
6 | 1, 4, 5 | mp2an 690 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
7 | df-ii 24392 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
8 | 7 | mopntopon 23944 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3948 × cxp 5674 ↾ cres 5678 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 ℝcr 11108 0cc0 11109 1c1 11110 − cmin 11443 [,]cicc 13326 abscabs 15180 ∞Metcxmet 20928 TopOnctopon 22411 IIcii 24390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-icc 13330 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-bases 22448 df-ii 24392 |
This theorem is referenced by: iitop 24395 iiuni 24396 icchmeo 24456 htpycom 24491 htpyid 24492 htpyco1 24493 htpyco2 24494 htpycc 24495 phtpycn 24498 phtpy01 24500 isphtpy2d 24502 phtpycom 24503 phtpyid 24504 phtpyco2 24505 phtpycc 24506 reparphti 24512 pcocn 24532 pcohtpylem 24534 pcoptcl 24536 pcopt 24537 pcopt2 24538 pcoass 24539 pcorevcl 24540 pcorevlem 24541 pi1xfrf 24568 pi1xfr 24570 pi1xfrcnvlem 24571 pi1xfrcnv 24572 pi1cof 24574 pi1coghm 24576 xrge0pluscn 32915 ptpconn 34219 indispconn 34220 connpconn 34221 txsconnlem 34226 txsconn 34227 cvxsconn 34229 cvmliftlem8 34278 cvmlift2lem2 34290 cvmlift2lem3 34291 cvmlift2lem6 34294 cvmlift2lem9 34297 cvmlift2lem11 34299 cvmlift2lem12 34300 cvmliftphtlem 34303 cvmlift3lem6 34310 cvmlift3lem9 34313 gg-icchmeo 35165 gg-reparphti 35167 |
Copyright terms: Public domain | W3C validator |