![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version |
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnxmet 24814 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
2 | unitssre 13559 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
3 | ax-resscn 11241 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | 2, 3 | sstri 4018 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
5 | xmetres2 24392 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
6 | 1, 4, 5 | mp2an 691 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
7 | df-ii 24922 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
8 | 7 | mopntopon 24470 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 − cmin 11520 [,]cicc 13410 abscabs 15283 ∞Metcxmet 21372 TopOnctopon 22937 IIcii 24920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-ii 24922 |
This theorem is referenced by: iitop 24925 iiuni 24926 icchmeo 24990 icchmeoOLD 24991 htpycom 25027 htpyid 25028 htpyco1 25029 htpyco2 25030 htpycc 25031 phtpycn 25034 phtpy01 25036 isphtpy2d 25038 phtpycom 25039 phtpyid 25040 phtpyco2 25041 phtpycc 25042 reparphti 25048 reparphtiOLD 25049 pcocn 25069 pcohtpylem 25071 pcoptcl 25073 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevcl 25077 pcorevlem 25078 pi1xfrf 25105 pi1xfr 25107 pi1xfrcnvlem 25108 pi1xfrcnv 25109 pi1cof 25111 pi1coghm 25113 xrge0pluscn 33886 ptpconn 35201 indispconn 35202 connpconn 35203 txsconnlem 35208 txsconn 35209 cvxsconn 35211 cvmliftlem8 35260 cvmlift2lem2 35272 cvmlift2lem3 35273 cvmlift2lem6 35276 cvmlift2lem9 35279 cvmlift2lem11 35281 cvmlift2lem12 35282 cvmliftphtlem 35285 cvmlift3lem6 35292 cvmlift3lem9 35295 |
Copyright terms: Public domain | W3C validator |