| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version | ||
| Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnxmet 24667 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 2 | unitssre 13467 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 3 | ax-resscn 11132 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 4 | 2, 3 | sstri 3959 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
| 5 | xmetres2 24256 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
| 6 | 1, 4, 5 | mp2an 692 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
| 7 | df-ii 24777 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
| 8 | 7 | mopntopon 24334 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
| 9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 − cmin 11412 [,]cicc 13316 abscabs 15207 ∞Metcxmet 21256 TopOnctopon 22804 IIcii 24775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-ii 24777 |
| This theorem is referenced by: iitop 24780 iiuni 24781 icchmeo 24845 icchmeoOLD 24846 htpycom 24882 htpyid 24883 htpyco1 24884 htpyco2 24885 htpycc 24886 phtpycn 24889 phtpy01 24891 isphtpy2d 24893 phtpycom 24894 phtpyid 24895 phtpyco2 24896 phtpycc 24897 reparphti 24903 reparphtiOLD 24904 pcocn 24924 pcohtpylem 24926 pcoptcl 24928 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevcl 24932 pcorevlem 24933 pi1xfrf 24960 pi1xfr 24962 pi1xfrcnvlem 24963 pi1xfrcnv 24964 pi1cof 24966 pi1coghm 24968 xrge0pluscn 33937 ptpconn 35227 indispconn 35228 connpconn 35229 txsconnlem 35234 txsconn 35235 cvxsconn 35237 cvmliftlem8 35286 cvmlift2lem2 35298 cvmlift2lem3 35299 cvmlift2lem6 35302 cvmlift2lem9 35305 cvmlift2lem11 35307 cvmlift2lem12 35308 cvmliftphtlem 35311 cvmlift3lem6 35318 cvmlift3lem9 35321 |
| Copyright terms: Public domain | W3C validator |