| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iitopon | Structured version Visualization version GIF version | ||
| Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| iitopon | ⊢ II ∈ (TopOn‘(0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnxmet 24676 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 2 | unitssre 13420 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 3 | ax-resscn 11085 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 4 | 2, 3 | sstri 3947 | . . 3 ⊢ (0[,]1) ⊆ ℂ |
| 5 | xmetres2 24265 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))) | |
| 6 | 1, 4, 5 | mp2an 692 | . 2 ⊢ ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) |
| 7 | df-ii 24786 | . . 3 ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | |
| 8 | 7 | mopntopon 24343 | . 2 ⊢ (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1))) |
| 9 | 6, 8 | ax-mp 5 | 1 ⊢ II ∈ (TopOn‘(0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 − cmin 11365 [,]cicc 13269 abscabs 15159 ∞Metcxmet 21264 TopOnctopon 22813 IIcii 24784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-ii 24786 |
| This theorem is referenced by: iitop 24789 iiuni 24790 icchmeo 24854 icchmeoOLD 24855 htpycom 24891 htpyid 24892 htpyco1 24893 htpyco2 24894 htpycc 24895 phtpycn 24898 phtpy01 24900 isphtpy2d 24902 phtpycom 24903 phtpyid 24904 phtpyco2 24905 phtpycc 24906 reparphti 24912 reparphtiOLD 24913 pcocn 24933 pcohtpylem 24935 pcoptcl 24937 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevcl 24941 pcorevlem 24942 pi1xfrf 24969 pi1xfr 24971 pi1xfrcnvlem 24972 pi1xfrcnv 24973 pi1cof 24975 pi1coghm 24977 xrge0pluscn 33906 ptpconn 35205 indispconn 35206 connpconn 35207 txsconnlem 35212 txsconn 35213 cvxsconn 35215 cvmliftlem8 35264 cvmlift2lem2 35276 cvmlift2lem3 35277 cvmlift2lem6 35280 cvmlift2lem9 35283 cvmlift2lem11 35285 cvmlift2lem12 35286 cvmliftphtlem 35289 cvmlift3lem6 35296 cvmlift3lem9 35299 |
| Copyright terms: Public domain | W3C validator |