Detailed syntax breakdown of Definition df-cncf
Step | Hyp | Ref
| Expression |
1 | | ccncf 23945 |
. 2
class
–cn→ |
2 | | va |
. . 3
setvar 𝑎 |
3 | | vb |
. . 3
setvar 𝑏 |
4 | | cc 10800 |
. . . 4
class
ℂ |
5 | 4 | cpw 4530 |
. . 3
class 𝒫
ℂ |
6 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
8 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
9 | 8 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
10 | | cmin 11135 |
. . . . . . . . . . . 12
class
− |
11 | 7, 9, 10 | co 7255 |
. . . . . . . . . . 11
class (𝑥 − 𝑦) |
12 | | cabs 14873 |
. . . . . . . . . . 11
class
abs |
13 | 11, 12 | cfv 6418 |
. . . . . . . . . 10
class
(abs‘(𝑥
− 𝑦)) |
14 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
15 | 14 | cv 1538 |
. . . . . . . . . 10
class 𝑑 |
16 | | clt 10940 |
. . . . . . . . . 10
class
< |
17 | 13, 15, 16 | wbr 5070 |
. . . . . . . . 9
wff
(abs‘(𝑥
− 𝑦)) < 𝑑 |
18 | | vf |
. . . . . . . . . . . . . 14
setvar 𝑓 |
19 | 18 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑓 |
20 | 7, 19 | cfv 6418 |
. . . . . . . . . . . 12
class (𝑓‘𝑥) |
21 | 9, 19 | cfv 6418 |
. . . . . . . . . . . 12
class (𝑓‘𝑦) |
22 | 20, 21, 10 | co 7255 |
. . . . . . . . . . 11
class ((𝑓‘𝑥) − (𝑓‘𝑦)) |
23 | 22, 12 | cfv 6418 |
. . . . . . . . . 10
class
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) |
24 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
25 | 24 | cv 1538 |
. . . . . . . . . 10
class 𝑒 |
26 | 23, 25, 16 | wbr 5070 |
. . . . . . . . 9
wff
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒 |
27 | 17, 26 | wi 4 |
. . . . . . . 8
wff
((abs‘(𝑥
− 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
28 | 2 | cv 1538 |
. . . . . . . 8
class 𝑎 |
29 | 27, 8, 28 | wral 3063 |
. . . . . . 7
wff
∀𝑦 ∈
𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
30 | | crp 12659 |
. . . . . . 7
class
ℝ+ |
31 | 29, 14, 30 | wrex 3064 |
. . . . . 6
wff
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
32 | 31, 24, 30 | wral 3063 |
. . . . 5
wff
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
33 | 32, 6, 28 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
𝑎 ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
34 | 3 | cv 1538 |
. . . . 5
class 𝑏 |
35 | | cmap 8573 |
. . . . 5
class
↑m |
36 | 34, 28, 35 | co 7255 |
. . . 4
class (𝑏 ↑m 𝑎) |
37 | 33, 18, 36 | crab 3067 |
. . 3
class {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)} |
38 | 2, 3, 5, 5, 37 | cmpo 7257 |
. 2
class (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
39 | 1, 38 | wceq 1539 |
1
wff
–cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |