Detailed syntax breakdown of Definition df-cncf
| Step | Hyp | Ref
| Expression |
| 1 | | ccncf 24902 |
. 2
class
–cn→ |
| 2 | | va |
. . 3
setvar 𝑎 |
| 3 | | vb |
. . 3
setvar 𝑏 |
| 4 | | cc 11153 |
. . . 4
class
ℂ |
| 5 | 4 | cpw 4600 |
. . 3
class 𝒫
ℂ |
| 6 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 8 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 10 | | cmin 11492 |
. . . . . . . . . . . 12
class
− |
| 11 | 7, 9, 10 | co 7431 |
. . . . . . . . . . 11
class (𝑥 − 𝑦) |
| 12 | | cabs 15273 |
. . . . . . . . . . 11
class
abs |
| 13 | 11, 12 | cfv 6561 |
. . . . . . . . . 10
class
(abs‘(𝑥
− 𝑦)) |
| 14 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 15 | 14 | cv 1539 |
. . . . . . . . . 10
class 𝑑 |
| 16 | | clt 11295 |
. . . . . . . . . 10
class
< |
| 17 | 13, 15, 16 | wbr 5143 |
. . . . . . . . 9
wff
(abs‘(𝑥
− 𝑦)) < 𝑑 |
| 18 | | vf |
. . . . . . . . . . . . . 14
setvar 𝑓 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑓 |
| 20 | 7, 19 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘𝑥) |
| 21 | 9, 19 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘𝑦) |
| 22 | 20, 21, 10 | co 7431 |
. . . . . . . . . . 11
class ((𝑓‘𝑥) − (𝑓‘𝑦)) |
| 23 | 22, 12 | cfv 6561 |
. . . . . . . . . 10
class
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) |
| 24 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
| 25 | 24 | cv 1539 |
. . . . . . . . . 10
class 𝑒 |
| 26 | 23, 25, 16 | wbr 5143 |
. . . . . . . . 9
wff
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒 |
| 27 | 17, 26 | wi 4 |
. . . . . . . 8
wff
((abs‘(𝑥
− 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
| 28 | 2 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 29 | 27, 8, 28 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
| 30 | | crp 13034 |
. . . . . . 7
class
ℝ+ |
| 31 | 29, 14, 30 | wrex 3070 |
. . . . . 6
wff
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
| 32 | 31, 24, 30 | wral 3061 |
. . . . 5
wff
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
| 33 | 32, 6, 28 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
𝑎 ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) |
| 34 | 3 | cv 1539 |
. . . . 5
class 𝑏 |
| 35 | | cmap 8866 |
. . . . 5
class
↑m |
| 36 | 34, 28, 35 | co 7431 |
. . . 4
class (𝑏 ↑m 𝑎) |
| 37 | 33, 18, 36 | crab 3436 |
. . 3
class {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)} |
| 38 | 2, 3, 5, 5, 37 | cmpo 7433 |
. 2
class (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
| 39 | 1, 38 | wceq 1540 |
1
wff
–cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |