MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   GIF version

Theorem lebnumii 24865
Description: Specialize the Lebesgue number lemma lebnum 24863 to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Distinct variable group:   𝑘,𝑛,𝑢,𝑈

Proof of Theorem lebnumii
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 24770 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
2 cnmet 24659 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
3 unitssre 13460 . . . . . 6 (0[,]1) ⊆ ℝ
4 ax-resscn 11125 . . . . . 6 ℝ ⊆ ℂ
53, 4sstri 3956 . . . . 5 (0[,]1) ⊆ ℂ
6 metres2 24251 . . . . 5 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
72, 5, 6mp2an 692 . . . 4 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1))
87a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
9 iicmp 24779 . . . 4 II ∈ Comp
109a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → II ∈ Comp)
11 simpl 482 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → 𝑈 ⊆ II)
12 simpr 484 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (0[,]1) = 𝑈)
131, 8, 10, 11, 12lebnum 24863 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢)
14 rpreccl 12979 . . . . . . . 8 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
1514adantl 481 . . . . . . 7 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
1615rpred 12995 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ)
1715rpge0d 12999 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → 0 ≤ (1 / 𝑟))
18 flge0nn0 13782 . . . . . 6 (((1 / 𝑟) ∈ ℝ ∧ 0 ≤ (1 / 𝑟)) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
1916, 17, 18syl2anc 584 . . . . 5 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
20 nn0p1nn 12481 . . . . 5 ((⌊‘(1 / 𝑟)) ∈ ℕ0 → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2119, 20syl 17 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
22 elfznn 13514 . . . . . . . . . . . 12 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℕ)
2423nnrpd 12993 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ+)
2521adantr 480 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2625nnrpd 12993 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ+)
2724, 26rpdivcld 13012 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ+)
2827rpred 12995 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
2927rpge0d 12999 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
30 elfzle2 13489 . . . . . . . . . . 11 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3130adantl 481 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3225nnred 12201 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ)
3332recnd 11202 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℂ)
3433mulridd 11191 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((⌊‘(1 / 𝑟)) + 1) · 1) = ((⌊‘(1 / 𝑟)) + 1))
3531, 34breqtrrd 5135 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1))
3623nnred 12201 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ)
37 1red 11175 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 1 ∈ ℝ)
3825nngt0d 12235 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < ((⌊‘(1 / 𝑟)) + 1))
39 ledivmul 12059 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4036, 37, 32, 38, 39syl112anc 1376 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4135, 40mpbird 257 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)
42 elicc01 13427 . . . . . . . 8 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1))
4328, 29, 41, 42syl3anbrc 1344 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1))
44 oveq1 7394 . . . . . . . . . 10 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
4544sseq1d 3978 . . . . . . . . 9 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → ((𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4645rexbidv 3157 . . . . . . . 8 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4746rspcv 3584 . . . . . . 7 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4843, 47syl 17 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
49 simplr 768 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ+)
5049rpred 12995 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ)
5128, 50resubcld 11606 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ)
5251rexrd 11224 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ*)
5328, 50readdcld 11203 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ)
5453rexrd 11224 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*)
55 nnm1nn0 12483 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5623, 55syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℕ0)
5756nn0red 12504 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℝ)
5857, 25nndivred 12240 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
5936recnd 11202 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℂ)
6057recnd 11202 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℂ)
6125nnne0d 12236 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ≠ 0)
6259, 60, 33, 61divsubdird 11997 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))))
63 ax-1cn 11126 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
64 nncan 11451 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑘 − (𝑘 − 1)) = 1)
6559, 63, 64sylancl 586 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − (𝑘 − 1)) = 1)
6665oveq1d 7402 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6762, 66eqtr3d 2766 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6849rprecred 13006 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) ∈ ℝ)
69 flltp1 13762 . . . . . . . . . . . . . . 15 ((1 / 𝑟) ∈ ℝ → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
7068, 69syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
71 rpgt0 12964 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → 0 < 𝑟)
7271ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < 𝑟)
73 ltdiv23 12074 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7437, 50, 72, 32, 38, 73syl122anc 1381 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7570, 74mpbid 232 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟)
7667, 75eqbrtrd 5129 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) < 𝑟)
7728, 58, 50, 76ltsub23d 11783 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
7828, 49ltaddrpd 13028 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))
79 iccssioo 13376 . . . . . . . . . . 11 (((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ* ∧ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*) ∧ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
8052, 54, 77, 78, 79syl22anc 838 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
81 0red 11177 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ∈ ℝ)
8256nn0ge0d 12506 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 − 1))
83 divge0 12052 . . . . . . . . . . . 12 ((((𝑘 − 1) ∈ ℝ ∧ 0 ≤ (𝑘 − 1)) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8457, 82, 32, 38, 83syl22anc 838 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
85 iccss 13375 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8681, 37, 84, 41, 85syl22anc 838 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8780, 86ssind 4204 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
88 eqid 2729 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8988rexmet 24679 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
90 sseqin2 4186 . . . . . . . . . . . . 13 ((0[,]1) ⊆ ℝ ↔ (ℝ ∩ (0[,]1)) = (0[,]1))
913, 90mpbi 230 . . . . . . . . . . . 12 (ℝ ∩ (0[,]1)) = (0[,]1)
9243, 91eleqtrrdi 2839 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)))
93 rpxr 12961 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9493ad2antlr 727 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ*)
95 xpss12 5653 . . . . . . . . . . . . . . 15 (((0[,]1) ⊆ ℝ ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ))
963, 3, 95mp2an 692 . . . . . . . . . . . . . 14 ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ)
97 resabs1 5977 . . . . . . . . . . . . . 14 (((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
9896, 97ax-mp 5 . . . . . . . . . . . . 13 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
9998eqcomi 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1)))
10099blres 24319 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)) ∧ 𝑟 ∈ ℝ*) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10189, 92, 94, 100mp3an2i 1468 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10288bl2ioo 24680 . . . . . . . . . . . 12 (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
10328, 50, 102syl2anc 584 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
104103ineq1d 4182 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
105101, 104eqtrd 2764 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
10687, 105sseqtrrd 3984 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
107 sstr2 3953 . . . . . . . 8 ((((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
108106, 107syl 17 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
109108reximdv 3148 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
11048, 109syld 47 . . . . 5 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
111110ralrimdva 3133 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
112 oveq2 7395 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (1...𝑛) = (1...((⌊‘(1 / 𝑟)) + 1)))
113 oveq2 7395 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((𝑘 − 1) / 𝑛) = ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
114 oveq2 7395 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (𝑘 / 𝑛) = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
115113, 114oveq12d 7405 . . . . . . . 8 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) = (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))))
116115sseq1d 3978 . . . . . . 7 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
117116rexbidv 3157 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
118112, 117raleqbidv 3319 . . . . 5 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
119118rspcev 3588 . . . 4 ((((⌊‘(1 / 𝑟)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
12021, 111, 119syl6an 684 . . 3 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
121120rexlimdva 3134 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
12213, 121mpd 15 1 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914   cuni 4871   class class class wbr 5107   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  +crp 12951  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  cfl 13752  abscabs 15200  ∞Metcxmet 21249  Metcmet 21250  ballcbl 21251  Compccmp 23273  IIcii 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770
This theorem is referenced by:  cvmliftlem15  35285
  Copyright terms: Public domain W3C validator