MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   GIF version

Theorem lebnumii 24035
Description: Specialize the Lebesgue number lemma lebnum 24033 to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Distinct variable group:   𝑘,𝑛,𝑢,𝑈

Proof of Theorem lebnumii
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 23946 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
2 cnmet 23841 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
3 unitssre 13160 . . . . . 6 (0[,]1) ⊆ ℝ
4 ax-resscn 10859 . . . . . 6 ℝ ⊆ ℂ
53, 4sstri 3926 . . . . 5 (0[,]1) ⊆ ℂ
6 metres2 23424 . . . . 5 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
72, 5, 6mp2an 688 . . . 4 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1))
87a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
9 iicmp 23955 . . . 4 II ∈ Comp
109a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → II ∈ Comp)
11 simpl 482 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → 𝑈 ⊆ II)
12 simpr 484 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (0[,]1) = 𝑈)
131, 8, 10, 11, 12lebnum 24033 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢)
14 rpreccl 12685 . . . . . . . 8 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
1514adantl 481 . . . . . . 7 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
1615rpred 12701 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ)
1715rpge0d 12705 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → 0 ≤ (1 / 𝑟))
18 flge0nn0 13468 . . . . . 6 (((1 / 𝑟) ∈ ℝ ∧ 0 ≤ (1 / 𝑟)) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
1916, 17, 18syl2anc 583 . . . . 5 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
20 nn0p1nn 12202 . . . . 5 ((⌊‘(1 / 𝑟)) ∈ ℕ0 → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2119, 20syl 17 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
22 elfznn 13214 . . . . . . . . . . . 12 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℕ)
2423nnrpd 12699 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ+)
2521adantr 480 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2625nnrpd 12699 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ+)
2724, 26rpdivcld 12718 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ+)
2827rpred 12701 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
2927rpge0d 12705 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
30 elfzle2 13189 . . . . . . . . . . 11 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3130adantl 481 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3225nnred 11918 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ)
3332recnd 10934 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℂ)
3433mulid1d 10923 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((⌊‘(1 / 𝑟)) + 1) · 1) = ((⌊‘(1 / 𝑟)) + 1))
3531, 34breqtrrd 5098 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1))
3623nnred 11918 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ)
37 1red 10907 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 1 ∈ ℝ)
3825nngt0d 11952 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < ((⌊‘(1 / 𝑟)) + 1))
39 ledivmul 11781 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4036, 37, 32, 38, 39syl112anc 1372 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4135, 40mpbird 256 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)
42 elicc01 13127 . . . . . . . 8 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1))
4328, 29, 41, 42syl3anbrc 1341 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1))
44 oveq1 7262 . . . . . . . . . 10 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
4544sseq1d 3948 . . . . . . . . 9 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → ((𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4645rexbidv 3225 . . . . . . . 8 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4746rspcv 3547 . . . . . . 7 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4843, 47syl 17 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
49 simplr 765 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ+)
5049rpred 12701 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ)
5128, 50resubcld 11333 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ)
5251rexrd 10956 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ*)
5328, 50readdcld 10935 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ)
5453rexrd 10956 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*)
55 nnm1nn0 12204 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5623, 55syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℕ0)
5756nn0red 12224 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℝ)
5857, 25nndivred 11957 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
5936recnd 10934 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℂ)
6057recnd 10934 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℂ)
6125nnne0d 11953 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ≠ 0)
6259, 60, 33, 61divsubdird 11720 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))))
63 ax-1cn 10860 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
64 nncan 11180 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑘 − (𝑘 − 1)) = 1)
6559, 63, 64sylancl 585 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − (𝑘 − 1)) = 1)
6665oveq1d 7270 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6762, 66eqtr3d 2780 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6849rprecred 12712 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) ∈ ℝ)
69 flltp1 13448 . . . . . . . . . . . . . . 15 ((1 / 𝑟) ∈ ℝ → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
7068, 69syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
71 rpgt0 12671 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → 0 < 𝑟)
7271ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < 𝑟)
73 ltdiv23 11796 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7437, 50, 72, 32, 38, 73syl122anc 1377 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7570, 74mpbid 231 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟)
7667, 75eqbrtrd 5092 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) < 𝑟)
7728, 58, 50, 76ltsub23d 11510 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
7828, 49ltaddrpd 12734 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))
79 iccssioo 13077 . . . . . . . . . . 11 (((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ* ∧ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*) ∧ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
8052, 54, 77, 78, 79syl22anc 835 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
81 0red 10909 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ∈ ℝ)
8256nn0ge0d 12226 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 − 1))
83 divge0 11774 . . . . . . . . . . . 12 ((((𝑘 − 1) ∈ ℝ ∧ 0 ≤ (𝑘 − 1)) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8457, 82, 32, 38, 83syl22anc 835 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
85 iccss 13076 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8681, 37, 84, 41, 85syl22anc 835 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8780, 86ssind 4163 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
88 eqid 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8988rexmet 23860 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
90 sseqin2 4146 . . . . . . . . . . . . 13 ((0[,]1) ⊆ ℝ ↔ (ℝ ∩ (0[,]1)) = (0[,]1))
913, 90mpbi 229 . . . . . . . . . . . 12 (ℝ ∩ (0[,]1)) = (0[,]1)
9243, 91eleqtrrdi 2850 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)))
93 rpxr 12668 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9493ad2antlr 723 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ*)
95 xpss12 5595 . . . . . . . . . . . . . . 15 (((0[,]1) ⊆ ℝ ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ))
963, 3, 95mp2an 688 . . . . . . . . . . . . . 14 ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ)
97 resabs1 5910 . . . . . . . . . . . . . 14 (((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
9896, 97ax-mp 5 . . . . . . . . . . . . 13 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
9998eqcomi 2747 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1)))
10099blres 23492 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)) ∧ 𝑟 ∈ ℝ*) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10189, 92, 94, 100mp3an2i 1464 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10288bl2ioo 23861 . . . . . . . . . . . 12 (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
10328, 50, 102syl2anc 583 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
104103ineq1d 4142 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
105101, 104eqtrd 2778 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
10687, 105sseqtrrd 3958 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
107 sstr2 3924 . . . . . . . 8 ((((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
108106, 107syl 17 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
109108reximdv 3201 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
11048, 109syld 47 . . . . 5 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
111110ralrimdva 3112 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
112 oveq2 7263 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (1...𝑛) = (1...((⌊‘(1 / 𝑟)) + 1)))
113 oveq2 7263 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((𝑘 − 1) / 𝑛) = ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
114 oveq2 7263 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (𝑘 / 𝑛) = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
115113, 114oveq12d 7273 . . . . . . . 8 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) = (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))))
116115sseq1d 3948 . . . . . . 7 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
117116rexbidv 3225 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
118112, 117raleqbidv 3327 . . . . 5 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
119118rspcev 3552 . . . 4 ((((⌊‘(1 / 𝑟)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
12021, 111, 119syl6an 680 . . 3 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
121120rexlimdva 3212 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
12213, 121mpd 15 1 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883   cuni 4836   class class class wbr 5070   × cxp 5578  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  +crp 12659  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  cfl 13438  abscabs 14873  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  Compccmp 22445  IIcii 23944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946
This theorem is referenced by:  cvmliftlem15  33160
  Copyright terms: Public domain W3C validator