MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   GIF version

Theorem lebnumii 23895
Description: Specialize the Lebesgue number lemma lebnum 23893 to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Distinct variable group:   𝑘,𝑛,𝑢,𝑈

Proof of Theorem lebnumii
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 23806 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
2 cnmet 23701 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
3 unitssre 13117 . . . . . 6 (0[,]1) ⊆ ℝ
4 ax-resscn 10816 . . . . . 6 ℝ ⊆ ℂ
53, 4sstri 3927 . . . . 5 (0[,]1) ⊆ ℂ
6 metres2 23293 . . . . 5 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
72, 5, 6mp2an 692 . . . 4 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1))
87a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
9 iicmp 23815 . . . 4 II ∈ Comp
109a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → II ∈ Comp)
11 simpl 486 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → 𝑈 ⊆ II)
12 simpr 488 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (0[,]1) = 𝑈)
131, 8, 10, 11, 12lebnum 23893 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢)
14 rpreccl 12642 . . . . . . . 8 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
1514adantl 485 . . . . . . 7 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
1615rpred 12658 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ)
1715rpge0d 12662 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → 0 ≤ (1 / 𝑟))
18 flge0nn0 13425 . . . . . 6 (((1 / 𝑟) ∈ ℝ ∧ 0 ≤ (1 / 𝑟)) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
1916, 17, 18syl2anc 587 . . . . 5 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
20 nn0p1nn 12159 . . . . 5 ((⌊‘(1 / 𝑟)) ∈ ℕ0 → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2119, 20syl 17 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
22 elfznn 13171 . . . . . . . . . . . 12 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ∈ ℕ)
2322adantl 485 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℕ)
2423nnrpd 12656 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ+)
2521adantr 484 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2625nnrpd 12656 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ+)
2724, 26rpdivcld 12675 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ+)
2827rpred 12658 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
2927rpge0d 12662 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
30 elfzle2 13146 . . . . . . . . . . 11 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3130adantl 485 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3225nnred 11875 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ)
3332recnd 10891 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℂ)
3433mulid1d 10880 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((⌊‘(1 / 𝑟)) + 1) · 1) = ((⌊‘(1 / 𝑟)) + 1))
3531, 34breqtrrd 5098 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1))
3623nnred 11875 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ)
37 1red 10864 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 1 ∈ ℝ)
3825nngt0d 11909 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < ((⌊‘(1 / 𝑟)) + 1))
39 ledivmul 11738 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4036, 37, 32, 38, 39syl112anc 1376 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4135, 40mpbird 260 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)
42 elicc01 13084 . . . . . . . 8 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1))
4328, 29, 41, 42syl3anbrc 1345 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1))
44 oveq1 7242 . . . . . . . . . 10 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
4544sseq1d 3949 . . . . . . . . 9 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → ((𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4645rexbidv 3226 . . . . . . . 8 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4746rspcv 3547 . . . . . . 7 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4843, 47syl 17 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
49 simplr 769 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ+)
5049rpred 12658 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ)
5128, 50resubcld 11290 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ)
5251rexrd 10913 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ*)
5328, 50readdcld 10892 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ)
5453rexrd 10913 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*)
55 nnm1nn0 12161 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5623, 55syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℕ0)
5756nn0red 12181 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℝ)
5857, 25nndivred 11914 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
5936recnd 10891 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℂ)
6057recnd 10891 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℂ)
6125nnne0d 11910 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ≠ 0)
6259, 60, 33, 61divsubdird 11677 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))))
63 ax-1cn 10817 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
64 nncan 11137 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑘 − (𝑘 − 1)) = 1)
6559, 63, 64sylancl 589 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − (𝑘 − 1)) = 1)
6665oveq1d 7250 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6762, 66eqtr3d 2781 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6849rprecred 12669 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) ∈ ℝ)
69 flltp1 13405 . . . . . . . . . . . . . . 15 ((1 / 𝑟) ∈ ℝ → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
7068, 69syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
71 rpgt0 12628 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → 0 < 𝑟)
7271ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < 𝑟)
73 ltdiv23 11753 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7437, 50, 72, 32, 38, 73syl122anc 1381 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7570, 74mpbid 235 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟)
7667, 75eqbrtrd 5092 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) < 𝑟)
7728, 58, 50, 76ltsub23d 11467 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
7828, 49ltaddrpd 12691 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))
79 iccssioo 13034 . . . . . . . . . . 11 (((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ* ∧ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*) ∧ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
8052, 54, 77, 78, 79syl22anc 839 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
81 0red 10866 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ∈ ℝ)
8256nn0ge0d 12183 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 − 1))
83 divge0 11731 . . . . . . . . . . . 12 ((((𝑘 − 1) ∈ ℝ ∧ 0 ≤ (𝑘 − 1)) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8457, 82, 32, 38, 83syl22anc 839 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
85 iccss 13033 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8681, 37, 84, 41, 85syl22anc 839 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8780, 86ssind 4164 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
88 eqid 2739 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8988rexmet 23720 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
90 sseqin2 4147 . . . . . . . . . . . . 13 ((0[,]1) ⊆ ℝ ↔ (ℝ ∩ (0[,]1)) = (0[,]1))
913, 90mpbi 233 . . . . . . . . . . . 12 (ℝ ∩ (0[,]1)) = (0[,]1)
9243, 91eleqtrrdi 2851 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)))
93 rpxr 12625 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9493ad2antlr 727 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ*)
95 xpss12 5584 . . . . . . . . . . . . . . 15 (((0[,]1) ⊆ ℝ ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ))
963, 3, 95mp2an 692 . . . . . . . . . . . . . 14 ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ)
97 resabs1 5899 . . . . . . . . . . . . . 14 (((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
9896, 97ax-mp 5 . . . . . . . . . . . . 13 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
9998eqcomi 2748 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1)))
10099blres 23361 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)) ∧ 𝑟 ∈ ℝ*) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10189, 92, 94, 100mp3an2i 1468 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10288bl2ioo 23721 . . . . . . . . . . . 12 (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
10328, 50, 102syl2anc 587 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
104103ineq1d 4143 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
105101, 104eqtrd 2779 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
10687, 105sseqtrrd 3959 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
107 sstr2 3925 . . . . . . . 8 ((((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
108106, 107syl 17 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
109108reximdv 3202 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
11048, 109syld 47 . . . . 5 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
111110ralrimdva 3113 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
112 oveq2 7243 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (1...𝑛) = (1...((⌊‘(1 / 𝑟)) + 1)))
113 oveq2 7243 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((𝑘 − 1) / 𝑛) = ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
114 oveq2 7243 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (𝑘 / 𝑛) = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
115113, 114oveq12d 7253 . . . . . . . 8 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) = (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))))
116115sseq1d 3949 . . . . . . 7 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
117116rexbidv 3226 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
118112, 117raleqbidv 3328 . . . . 5 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
119118rspcev 3552 . . . 4 ((((⌊‘(1 / 𝑟)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
12021, 111, 119syl6an 684 . . 3 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
121120rexlimdva 3213 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
12213, 121mpd 15 1 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3064  wrex 3065  cin 3882  wss 3883   cuni 4836   class class class wbr 5070   × cxp 5567  cres 5571  ccom 5573  cfv 6401  (class class class)co 7235  cc 10757  cr 10758  0cc0 10759  1c1 10760   + caddc 10762   · cmul 10764  *cxr 10896   < clt 10897  cle 10898  cmin 11092   / cdiv 11519  cn 11860  0cn0 12120  +crp 12616  (,)cioo 12965  [,]cicc 12968  ...cfz 13125  cfl 13395  abscabs 14830  ∞Metcxmet 20381  Metcmet 20382  ballcbl 20383  Compccmp 22315  IIcii 23804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-inf2 9286  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836  ax-pre-sup 10837  ax-addf 10838  ax-mulf 10839
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-se 5528  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-isom 6410  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-of 7491  df-om 7667  df-1st 7783  df-2nd 7784  df-supp 7928  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-2o 8227  df-er 8415  df-ec 8417  df-map 8534  df-ixp 8603  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-fsupp 9016  df-fi 9057  df-sup 9088  df-inf 9089  df-oi 9156  df-card 9585  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-div 11520  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-9 11930  df-n0 12121  df-z 12207  df-dec 12324  df-uz 12469  df-q 12575  df-rp 12617  df-xneg 12734  df-xadd 12735  df-xmul 12736  df-ioo 12969  df-ico 12971  df-icc 12972  df-fz 13126  df-fzo 13269  df-fl 13397  df-seq 13607  df-exp 13668  df-hash 13930  df-cj 14695  df-re 14696  df-im 14697  df-sqrt 14831  df-abs 14832  df-clim 15082  df-sum 15283  df-struct 16733  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-mulr 16849  df-starv 16850  df-sca 16851  df-vsca 16852  df-ip 16853  df-tset 16854  df-ple 16855  df-ds 16857  df-unif 16858  df-hom 16859  df-cco 16860  df-rest 16960  df-topn 16961  df-0g 16979  df-gsum 16980  df-topgen 16981  df-pt 16982  df-prds 16985  df-xrs 17040  df-qtop 17045  df-imas 17046  df-xps 17048  df-mre 17122  df-mrc 17123  df-acs 17125  df-mgm 18147  df-sgrp 18196  df-mnd 18207  df-submnd 18252  df-mulg 18522  df-cntz 18744  df-cmn 19205  df-psmet 20388  df-xmet 20389  df-met 20390  df-bl 20391  df-mopn 20392  df-cnfld 20397  df-top 21823  df-topon 21840  df-topsp 21862  df-bases 21875  df-cld 21948  df-ntr 21949  df-cls 21950  df-cn 22156  df-cnp 22157  df-cmp 22316  df-tx 22491  df-hmeo 22684  df-xms 23250  df-ms 23251  df-tms 23252  df-ii 23806
This theorem is referenced by:  cvmliftlem15  33004
  Copyright terms: Public domain W3C validator