MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   GIF version

Theorem lebnumii 25011
Description: Specialize the Lebesgue number lemma lebnum 25009 to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Distinct variable group:   𝑘,𝑛,𝑢,𝑈

Proof of Theorem lebnumii
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 24916 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
2 cnmet 24807 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
3 unitssre 13535 . . . . . 6 (0[,]1) ⊆ ℝ
4 ax-resscn 11209 . . . . . 6 ℝ ⊆ ℂ
53, 4sstri 4004 . . . . 5 (0[,]1) ⊆ ℂ
6 metres2 24388 . . . . 5 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
72, 5, 6mp2an 692 . . . 4 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1))
87a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
9 iicmp 24925 . . . 4 II ∈ Comp
109a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → II ∈ Comp)
11 simpl 482 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → 𝑈 ⊆ II)
12 simpr 484 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (0[,]1) = 𝑈)
131, 8, 10, 11, 12lebnum 25009 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢)
14 rpreccl 13058 . . . . . . . 8 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
1514adantl 481 . . . . . . 7 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
1615rpred 13074 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ)
1715rpge0d 13078 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → 0 ≤ (1 / 𝑟))
18 flge0nn0 13856 . . . . . 6 (((1 / 𝑟) ∈ ℝ ∧ 0 ≤ (1 / 𝑟)) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
1916, 17, 18syl2anc 584 . . . . 5 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
20 nn0p1nn 12562 . . . . 5 ((⌊‘(1 / 𝑟)) ∈ ℕ0 → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2119, 20syl 17 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
22 elfznn 13589 . . . . . . . . . . . 12 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℕ)
2423nnrpd 13072 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ+)
2521adantr 480 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2625nnrpd 13072 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ+)
2724, 26rpdivcld 13091 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ+)
2827rpred 13074 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
2927rpge0d 13078 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
30 elfzle2 13564 . . . . . . . . . . 11 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3130adantl 481 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3225nnred 12278 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ)
3332recnd 11286 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℂ)
3433mulridd 11275 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((⌊‘(1 / 𝑟)) + 1) · 1) = ((⌊‘(1 / 𝑟)) + 1))
3531, 34breqtrrd 5175 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1))
3623nnred 12278 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ)
37 1red 11259 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 1 ∈ ℝ)
3825nngt0d 12312 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < ((⌊‘(1 / 𝑟)) + 1))
39 ledivmul 12141 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4036, 37, 32, 38, 39syl112anc 1373 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4135, 40mpbird 257 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)
42 elicc01 13502 . . . . . . . 8 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1))
4328, 29, 41, 42syl3anbrc 1342 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1))
44 oveq1 7437 . . . . . . . . . 10 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
4544sseq1d 4026 . . . . . . . . 9 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → ((𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4645rexbidv 3176 . . . . . . . 8 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4746rspcv 3617 . . . . . . 7 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4843, 47syl 17 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
49 simplr 769 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ+)
5049rpred 13074 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ)
5128, 50resubcld 11688 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ)
5251rexrd 11308 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ*)
5328, 50readdcld 11287 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ)
5453rexrd 11308 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*)
55 nnm1nn0 12564 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5623, 55syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℕ0)
5756nn0red 12585 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℝ)
5857, 25nndivred 12317 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
5936recnd 11286 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℂ)
6057recnd 11286 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℂ)
6125nnne0d 12313 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ≠ 0)
6259, 60, 33, 61divsubdird 12079 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))))
63 ax-1cn 11210 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
64 nncan 11535 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑘 − (𝑘 − 1)) = 1)
6559, 63, 64sylancl 586 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − (𝑘 − 1)) = 1)
6665oveq1d 7445 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6762, 66eqtr3d 2776 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6849rprecred 13085 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) ∈ ℝ)
69 flltp1 13836 . . . . . . . . . . . . . . 15 ((1 / 𝑟) ∈ ℝ → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
7068, 69syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
71 rpgt0 13044 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → 0 < 𝑟)
7271ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < 𝑟)
73 ltdiv23 12156 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7437, 50, 72, 32, 38, 73syl122anc 1378 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7570, 74mpbid 232 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟)
7667, 75eqbrtrd 5169 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) < 𝑟)
7728, 58, 50, 76ltsub23d 11865 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
7828, 49ltaddrpd 13107 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))
79 iccssioo 13452 . . . . . . . . . . 11 (((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ* ∧ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*) ∧ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
8052, 54, 77, 78, 79syl22anc 839 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
81 0red 11261 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ∈ ℝ)
8256nn0ge0d 12587 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 − 1))
83 divge0 12134 . . . . . . . . . . . 12 ((((𝑘 − 1) ∈ ℝ ∧ 0 ≤ (𝑘 − 1)) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8457, 82, 32, 38, 83syl22anc 839 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
85 iccss 13451 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8681, 37, 84, 41, 85syl22anc 839 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8780, 86ssind 4248 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
88 eqid 2734 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8988rexmet 24826 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
90 sseqin2 4230 . . . . . . . . . . . . 13 ((0[,]1) ⊆ ℝ ↔ (ℝ ∩ (0[,]1)) = (0[,]1))
913, 90mpbi 230 . . . . . . . . . . . 12 (ℝ ∩ (0[,]1)) = (0[,]1)
9243, 91eleqtrrdi 2849 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)))
93 rpxr 13041 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9493ad2antlr 727 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ*)
95 xpss12 5703 . . . . . . . . . . . . . . 15 (((0[,]1) ⊆ ℝ ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ))
963, 3, 95mp2an 692 . . . . . . . . . . . . . 14 ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ)
97 resabs1 6026 . . . . . . . . . . . . . 14 (((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
9896, 97ax-mp 5 . . . . . . . . . . . . 13 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
9998eqcomi 2743 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1)))
10099blres 24456 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)) ∧ 𝑟 ∈ ℝ*) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10189, 92, 94, 100mp3an2i 1465 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10288bl2ioo 24827 . . . . . . . . . . . 12 (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
10328, 50, 102syl2anc 584 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
104103ineq1d 4226 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
105101, 104eqtrd 2774 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
10687, 105sseqtrrd 4036 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
107 sstr2 4001 . . . . . . . 8 ((((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
108106, 107syl 17 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
109108reximdv 3167 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
11048, 109syld 47 . . . . 5 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
111110ralrimdva 3151 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
112 oveq2 7438 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (1...𝑛) = (1...((⌊‘(1 / 𝑟)) + 1)))
113 oveq2 7438 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((𝑘 − 1) / 𝑛) = ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
114 oveq2 7438 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (𝑘 / 𝑛) = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
115113, 114oveq12d 7448 . . . . . . . 8 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) = (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))))
116115sseq1d 4026 . . . . . . 7 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
117116rexbidv 3176 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
118112, 117raleqbidv 3343 . . . . 5 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
119118rspcev 3621 . . . 4 ((((⌊‘(1 / 𝑟)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
12021, 111, 119syl6an 684 . . 3 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
121120rexlimdva 3152 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
12213, 121mpd 15 1 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  cin 3961  wss 3962   cuni 4911   class class class wbr 5147   × cxp 5686  cres 5690  ccom 5692  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  +crp 13031  (,)cioo 13383  [,]cicc 13386  ...cfz 13543  cfl 13826  abscabs 15269  ∞Metcxmet 21366  Metcmet 21367  ballcbl 21368  Compccmp 23409  IIcii 24914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-cn 23250  df-cnp 23251  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-ii 24916
This theorem is referenced by:  cvmliftlem15  35282
  Copyright terms: Public domain W3C validator