MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfii2 Structured version   Visualization version   GIF version

Theorem dfii2 24863
Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
dfii2 II = ((topGen‘ran (,)) ↾t (0[,]1))

Proof of Theorem dfii2
StepHypRef Expression
1 unitssre 13522 . 2 (0[,]1) ⊆ ℝ
2 eqid 2734 . . 3 (topGen‘ran (,)) = (topGen‘ran (,))
3 df-ii 24858 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
42, 3resubmet 24778 . 2 ((0[,]1) ⊆ ℝ → II = ((topGen‘ran (,)) ↾t (0[,]1)))
51, 4ax-mp 5 1 II = ((topGen‘ran (,)) ↾t (0[,]1))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3933  ran crn 5668  cfv 6542  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139  (,)cioo 13370  [,]cicc 13373  t crest 17441  topGenctg 17458  IIcii 24856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-icc 13377  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-rest 17443  df-topgen 17464  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-top 22867  df-topon 22884  df-bases 22919  df-ii 24858
This theorem is referenced by:  dfii5  24866  iicmp  24867  iiconn  24868  iirevcn  24912  iihalf1cn  24914  iihalf1cnOLD  24915  iihalf2cn  24917  iihalf2cnOLD  24918  htpycc  24967  pcocn  25005  pcohtpylem  25007  pcopt  25010  pcopt2  25011  pcoass  25012  pcorevlem  25014  iisconn  35198  iillysconn  35199  cvmliftlem8  35238  cvmliftlem11  35241  poimirlem30  37598  iooii  48763  i0oii  48765  io1ii  48766
  Copyright terms: Public domain W3C validator