Detailed syntax breakdown of Definition df-ipo
Step | Hyp | Ref
| Expression |
1 | | cipo 18290 |
. 2
class
toInc |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cvv 3437 |
. . 3
class
V |
4 | | vo |
. . . 4
setvar 𝑜 |
5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑥 |
7 | | vy |
. . . . . . . . 9
setvar 𝑦 |
8 | 7 | cv 1538 |
. . . . . . . 8
class 𝑦 |
9 | 6, 8 | cpr 4567 |
. . . . . . 7
class {𝑥, 𝑦} |
10 | 2 | cv 1538 |
. . . . . . 7
class 𝑓 |
11 | 9, 10 | wss 3892 |
. . . . . 6
wff {𝑥, 𝑦} ⊆ 𝑓 |
12 | 6, 8 | wss 3892 |
. . . . . 6
wff 𝑥 ⊆ 𝑦 |
13 | 11, 12 | wa 397 |
. . . . 5
wff ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦) |
14 | 13, 5, 7 | copab 5143 |
. . . 4
class
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} |
15 | | cnx 16939 |
. . . . . . . 8
class
ndx |
16 | | cbs 16957 |
. . . . . . . 8
class
Base |
17 | 15, 16 | cfv 6458 |
. . . . . . 7
class
(Base‘ndx) |
18 | 17, 10 | cop 4571 |
. . . . . 6
class
〈(Base‘ndx), 𝑓〉 |
19 | | cts 17013 |
. . . . . . . 8
class
TopSet |
20 | 15, 19 | cfv 6458 |
. . . . . . 7
class
(TopSet‘ndx) |
21 | 4 | cv 1538 |
. . . . . . . 8
class 𝑜 |
22 | | cordt 17255 |
. . . . . . . 8
class
ordTop |
23 | 21, 22 | cfv 6458 |
. . . . . . 7
class
(ordTop‘𝑜) |
24 | 20, 23 | cop 4571 |
. . . . . 6
class
〈(TopSet‘ndx), (ordTop‘𝑜)〉 |
25 | 18, 24 | cpr 4567 |
. . . . 5
class
{〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx),
(ordTop‘𝑜)〉} |
26 | | cple 17014 |
. . . . . . . 8
class
le |
27 | 15, 26 | cfv 6458 |
. . . . . . 7
class
(le‘ndx) |
28 | 27, 21 | cop 4571 |
. . . . . 6
class
〈(le‘ndx), 𝑜〉 |
29 | | coc 17015 |
. . . . . . . 8
class
oc |
30 | 15, 29 | cfv 6458 |
. . . . . . 7
class
(oc‘ndx) |
31 | 8, 6 | cin 3891 |
. . . . . . . . . . 11
class (𝑦 ∩ 𝑥) |
32 | | c0 4262 |
. . . . . . . . . . 11
class
∅ |
33 | 31, 32 | wceq 1539 |
. . . . . . . . . 10
wff (𝑦 ∩ 𝑥) = ∅ |
34 | 33, 7, 10 | crab 3284 |
. . . . . . . . 9
class {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅} |
35 | 34 | cuni 4844 |
. . . . . . . 8
class ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅} |
36 | 5, 10, 35 | cmpt 5164 |
. . . . . . 7
class (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅}) |
37 | 30, 36 | cop 4571 |
. . . . . 6
class
〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉 |
38 | 28, 37 | cpr 4567 |
. . . . 5
class
{〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉} |
39 | 25, 38 | cun 3890 |
. . . 4
class
({〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx),
(ordTop‘𝑜)〉}
∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
40 | 4, 14, 39 | csb 3837 |
. . 3
class
⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
41 | 2, 3, 40 | cmpt 5164 |
. 2
class (𝑓 ∈ V ↦
⦋{〈𝑥,
𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
42 | 1, 41 | wceq 1539 |
1
wff toInc =
(𝑓 ∈ V ↦
⦋{〈𝑥,
𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |