Step | Hyp | Ref
| Expression |
1 | | cipo 18477 |
. 2
class
toInc |
2 | | vf |
. . 3
setvar π |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vo |
. . . 4
setvar π |
5 | | vx |
. . . . . . . . 9
setvar π₯ |
6 | 5 | cv 1541 |
. . . . . . . 8
class π₯ |
7 | | vy |
. . . . . . . . 9
setvar π¦ |
8 | 7 | cv 1541 |
. . . . . . . 8
class π¦ |
9 | 6, 8 | cpr 4630 |
. . . . . . 7
class {π₯, π¦} |
10 | 2 | cv 1541 |
. . . . . . 7
class π |
11 | 9, 10 | wss 3948 |
. . . . . 6
wff {π₯, π¦} β π |
12 | 6, 8 | wss 3948 |
. . . . . 6
wff π₯ β π¦ |
13 | 11, 12 | wa 397 |
. . . . 5
wff ({π₯, π¦} β π β§ π₯ β π¦) |
14 | 13, 5, 7 | copab 5210 |
. . . 4
class
{β¨π₯, π¦β© β£ ({π₯, π¦} β π β§ π₯ β π¦)} |
15 | | cnx 17123 |
. . . . . . . 8
class
ndx |
16 | | cbs 17141 |
. . . . . . . 8
class
Base |
17 | 15, 16 | cfv 6541 |
. . . . . . 7
class
(Baseβndx) |
18 | 17, 10 | cop 4634 |
. . . . . 6
class
β¨(Baseβndx), πβ© |
19 | | cts 17200 |
. . . . . . . 8
class
TopSet |
20 | 15, 19 | cfv 6541 |
. . . . . . 7
class
(TopSetβndx) |
21 | 4 | cv 1541 |
. . . . . . . 8
class π |
22 | | cordt 17442 |
. . . . . . . 8
class
ordTop |
23 | 21, 22 | cfv 6541 |
. . . . . . 7
class
(ordTopβπ) |
24 | 20, 23 | cop 4634 |
. . . . . 6
class
β¨(TopSetβndx), (ordTopβπ)β© |
25 | 18, 24 | cpr 4630 |
. . . . 5
class
{β¨(Baseβndx), πβ©, β¨(TopSetβndx),
(ordTopβπ)β©} |
26 | | cple 17201 |
. . . . . . . 8
class
le |
27 | 15, 26 | cfv 6541 |
. . . . . . 7
class
(leβndx) |
28 | 27, 21 | cop 4634 |
. . . . . 6
class
β¨(leβndx), πβ© |
29 | | coc 17202 |
. . . . . . . 8
class
oc |
30 | 15, 29 | cfv 6541 |
. . . . . . 7
class
(ocβndx) |
31 | 8, 6 | cin 3947 |
. . . . . . . . . . 11
class (π¦ β© π₯) |
32 | | c0 4322 |
. . . . . . . . . . 11
class
β
|
33 | 31, 32 | wceq 1542 |
. . . . . . . . . 10
wff (π¦ β© π₯) = β
|
34 | 33, 7, 10 | crab 3433 |
. . . . . . . . 9
class {π¦ β π β£ (π¦ β© π₯) = β
} |
35 | 34 | cuni 4908 |
. . . . . . . 8
class βͺ {π¦
β π β£ (π¦ β© π₯) = β
} |
36 | 5, 10, 35 | cmpt 5231 |
. . . . . . 7
class (π₯ β π β¦ βͺ {π¦ β π β£ (π¦ β© π₯) = β
}) |
37 | 30, 36 | cop 4634 |
. . . . . 6
class
β¨(ocβndx), (π₯ β π β¦ βͺ {π¦ β π β£ (π¦ β© π₯) = β
})β© |
38 | 28, 37 | cpr 4630 |
. . . . 5
class
{β¨(leβndx), πβ©, β¨(ocβndx), (π₯ β π β¦ βͺ {π¦ β π β£ (π¦ β© π₯) = β
})β©} |
39 | 25, 38 | cun 3946 |
. . . 4
class
({β¨(Baseβndx), πβ©, β¨(TopSetβndx),
(ordTopβπ)β©}
βͺ {β¨(leβndx), πβ©, β¨(ocβndx), (π₯ β π β¦ βͺ {π¦ β π β£ (π¦ β© π₯) = β
})β©}) |
40 | 4, 14, 39 | csb 3893 |
. . 3
class
β¦{β¨π₯, π¦β© β£ ({π₯, π¦} β π β§ π₯ β π¦)} / πβ¦({β¨(Baseβndx),
πβ©,
β¨(TopSetβndx), (ordTopβπ)β©} βͺ {β¨(leβndx), πβ©, β¨(ocβndx),
(π₯ β π β¦ βͺ {π¦
β π β£ (π¦ β© π₯) = β
})β©}) |
41 | 2, 3, 40 | cmpt 5231 |
. 2
class (π β V β¦
β¦{β¨π₯,
π¦β© β£ ({π₯, π¦} β π β§ π₯ β π¦)} / πβ¦({β¨(Baseβndx),
πβ©,
β¨(TopSetβndx), (ordTopβπ)β©} βͺ {β¨(leβndx), πβ©, β¨(ocβndx),
(π₯ β π β¦ βͺ {π¦
β π β£ (π¦ β© π₯) = β
})β©})) |
42 | 1, 41 | wceq 1542 |
1
wff toInc =
(π β V β¦
β¦{β¨π₯,
π¦β© β£ ({π₯, π¦} β π β§ π₯ β π¦)} / πβ¦({β¨(Baseβndx),
πβ©,
β¨(TopSetβndx), (ordTopβπ)β©} βͺ {β¨(leβndx), πβ©, β¨(ocβndx),
(π₯ β π β¦ βͺ {π¦
β π β£ (π¦ β© π₯) = β
})β©})) |