Detailed syntax breakdown of Definition df-ipo
| Step | Hyp | Ref
| Expression |
| 1 | | cipo 18572 |
. 2
class
toInc |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vo |
. . . 4
setvar 𝑜 |
| 5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 7 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 9 | 6, 8 | cpr 4628 |
. . . . . . 7
class {𝑥, 𝑦} |
| 10 | 2 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 11 | 9, 10 | wss 3951 |
. . . . . 6
wff {𝑥, 𝑦} ⊆ 𝑓 |
| 12 | 6, 8 | wss 3951 |
. . . . . 6
wff 𝑥 ⊆ 𝑦 |
| 13 | 11, 12 | wa 395 |
. . . . 5
wff ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦) |
| 14 | 13, 5, 7 | copab 5205 |
. . . 4
class
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} |
| 15 | | cnx 17230 |
. . . . . . . 8
class
ndx |
| 16 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 17 | 15, 16 | cfv 6561 |
. . . . . . 7
class
(Base‘ndx) |
| 18 | 17, 10 | cop 4632 |
. . . . . 6
class
〈(Base‘ndx), 𝑓〉 |
| 19 | | cts 17303 |
. . . . . . . 8
class
TopSet |
| 20 | 15, 19 | cfv 6561 |
. . . . . . 7
class
(TopSet‘ndx) |
| 21 | 4 | cv 1539 |
. . . . . . . 8
class 𝑜 |
| 22 | | cordt 17544 |
. . . . . . . 8
class
ordTop |
| 23 | 21, 22 | cfv 6561 |
. . . . . . 7
class
(ordTop‘𝑜) |
| 24 | 20, 23 | cop 4632 |
. . . . . 6
class
〈(TopSet‘ndx), (ordTop‘𝑜)〉 |
| 25 | 18, 24 | cpr 4628 |
. . . . 5
class
{〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx),
(ordTop‘𝑜)〉} |
| 26 | | cple 17304 |
. . . . . . . 8
class
le |
| 27 | 15, 26 | cfv 6561 |
. . . . . . 7
class
(le‘ndx) |
| 28 | 27, 21 | cop 4632 |
. . . . . 6
class
〈(le‘ndx), 𝑜〉 |
| 29 | | coc 17305 |
. . . . . . . 8
class
oc |
| 30 | 15, 29 | cfv 6561 |
. . . . . . 7
class
(oc‘ndx) |
| 31 | 8, 6 | cin 3950 |
. . . . . . . . . . 11
class (𝑦 ∩ 𝑥) |
| 32 | | c0 4333 |
. . . . . . . . . . 11
class
∅ |
| 33 | 31, 32 | wceq 1540 |
. . . . . . . . . 10
wff (𝑦 ∩ 𝑥) = ∅ |
| 34 | 33, 7, 10 | crab 3436 |
. . . . . . . . 9
class {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅} |
| 35 | 34 | cuni 4907 |
. . . . . . . 8
class ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅} |
| 36 | 5, 10, 35 | cmpt 5225 |
. . . . . . 7
class (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅}) |
| 37 | 30, 36 | cop 4632 |
. . . . . 6
class
〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉 |
| 38 | 28, 37 | cpr 4628 |
. . . . 5
class
{〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉} |
| 39 | 25, 38 | cun 3949 |
. . . 4
class
({〈(Base‘ndx), 𝑓〉, 〈(TopSet‘ndx),
(ordTop‘𝑜)〉}
∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx), (𝑥 ∈ 𝑓 ↦ ∪ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
| 40 | 4, 14, 39 | csb 3899 |
. . 3
class
⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
| 41 | 2, 3, 40 | cmpt 5225 |
. 2
class (𝑓 ∈ V ↦
⦋{〈𝑥,
𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
| 42 | 1, 41 | wceq 1540 |
1
wff toInc =
(𝑓 ∈ V ↦
⦋{〈𝑥,
𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |