MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipo Structured version   Visualization version   GIF version

Definition df-ipo 18478
Description: For any family of sets, define the poset of that family ordered by inclusion. See ipobas 18481, ipolerval 18482, and ipole 18484 for its contract.

EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015.) (New usage is discouraged.)

Assertion
Ref Expression
df-ipo toInc = (𝑓 ∈ V ↦ ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
Distinct variable group:   𝑓,π‘œ,π‘₯,𝑦

Detailed syntax breakdown of Definition df-ipo
StepHypRef Expression
1 cipo 18477 . 2 class toInc
2 vf . . 3 setvar 𝑓
3 cvv 3475 . . 3 class V
4 vo . . . 4 setvar π‘œ
5 vx . . . . . . . . 9 setvar π‘₯
65cv 1541 . . . . . . . 8 class π‘₯
7 vy . . . . . . . . 9 setvar 𝑦
87cv 1541 . . . . . . . 8 class 𝑦
96, 8cpr 4630 . . . . . . 7 class {π‘₯, 𝑦}
102cv 1541 . . . . . . 7 class 𝑓
119, 10wss 3948 . . . . . 6 wff {π‘₯, 𝑦} βŠ† 𝑓
126, 8wss 3948 . . . . . 6 wff π‘₯ βŠ† 𝑦
1311, 12wa 397 . . . . 5 wff ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)
1413, 5, 7copab 5210 . . . 4 class {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)}
15 cnx 17123 . . . . . . . 8 class ndx
16 cbs 17141 . . . . . . . 8 class Base
1715, 16cfv 6541 . . . . . . 7 class (Baseβ€˜ndx)
1817, 10cop 4634 . . . . . 6 class ⟨(Baseβ€˜ndx), π‘“βŸ©
19 cts 17200 . . . . . . . 8 class TopSet
2015, 19cfv 6541 . . . . . . 7 class (TopSetβ€˜ndx)
214cv 1541 . . . . . . . 8 class π‘œ
22 cordt 17442 . . . . . . . 8 class ordTop
2321, 22cfv 6541 . . . . . . 7 class (ordTopβ€˜π‘œ)
2420, 23cop 4634 . . . . . 6 class ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩
2518, 24cpr 4630 . . . . 5 class {⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩}
26 cple 17201 . . . . . . . 8 class le
2715, 26cfv 6541 . . . . . . 7 class (leβ€˜ndx)
2827, 21cop 4634 . . . . . 6 class ⟨(leβ€˜ndx), π‘œβŸ©
29 coc 17202 . . . . . . . 8 class oc
3015, 29cfv 6541 . . . . . . 7 class (ocβ€˜ndx)
318, 6cin 3947 . . . . . . . . . . 11 class (𝑦 ∩ π‘₯)
32 c0 4322 . . . . . . . . . . 11 class βˆ…
3331, 32wceq 1542 . . . . . . . . . 10 wff (𝑦 ∩ π‘₯) = βˆ…
3433, 7, 10crab 3433 . . . . . . . . 9 class {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…}
3534cuni 4908 . . . . . . . 8 class βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…}
365, 10, 35cmpt 5231 . . . . . . 7 class (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})
3730, 36cop 4634 . . . . . 6 class ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩
3828, 37cpr 4630 . . . . 5 class {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}
3925, 38cun 3946 . . . 4 class ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩})
404, 14, 39csb 3893 . . 3 class ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩})
412, 3, 40cmpt 5231 . 2 class (𝑓 ∈ V ↦ ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
421, 41wceq 1542 1 wff toInc = (𝑓 ∈ V ↦ ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  ipoval  18480
  Copyright terms: Public domain W3C validator