MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipoval Structured version   Visualization version   GIF version

Theorem ipoval 18600
Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
ipoval.l = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
Assertion
Ref Expression
ipoval (𝐹𝑉𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐼,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem ipoval
Dummy variables 𝑓 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐹𝑉𝐹 ∈ V)
2 ipoval.i . . 3 𝐼 = (toInc‘𝐹)
3 vex 3492 . . . . . . . 8 𝑓 ∈ V
43, 3xpex 7788 . . . . . . 7 (𝑓 × 𝑓) ∈ V
5 simpl 482 . . . . . . . . . 10 (({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦) → {𝑥, 𝑦} ⊆ 𝑓)
6 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
7 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
86, 7prss 4845 . . . . . . . . . 10 ((𝑥𝑓𝑦𝑓) ↔ {𝑥, 𝑦} ⊆ 𝑓)
95, 8sylibr 234 . . . . . . . . 9 (({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦) → (𝑥𝑓𝑦𝑓))
109ssopab2i 5569 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑓𝑦𝑓)}
11 df-xp 5706 . . . . . . . 8 (𝑓 × 𝑓) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑓𝑦𝑓)}
1210, 11sseqtrri 4046 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} ⊆ (𝑓 × 𝑓)
134, 12ssexi 5340 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} ∈ V
1413a1i 11 . . . . 5 (𝑓 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} ∈ V)
15 sseq2 4035 . . . . . . . 8 (𝑓 = 𝐹 → ({𝑥, 𝑦} ⊆ 𝑓 ↔ {𝑥, 𝑦} ⊆ 𝐹))
1615anbi1d 630 . . . . . . 7 (𝑓 = 𝐹 → (({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)))
1716opabbidv 5232 . . . . . 6 (𝑓 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})
18 ipoval.l . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
1917, 18eqtr4di 2798 . . . . 5 (𝑓 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} = )
20 simpl 482 . . . . . . . 8 ((𝑓 = 𝐹𝑜 = ) → 𝑓 = 𝐹)
2120opeq2d 4904 . . . . . . 7 ((𝑓 = 𝐹𝑜 = ) → ⟨(Base‘ndx), 𝑓⟩ = ⟨(Base‘ndx), 𝐹⟩)
22 simpr 484 . . . . . . . . 9 ((𝑓 = 𝐹𝑜 = ) → 𝑜 = )
2322fveq2d 6924 . . . . . . . 8 ((𝑓 = 𝐹𝑜 = ) → (ordTop‘𝑜) = (ordTop‘ ))
2423opeq2d 4904 . . . . . . 7 ((𝑓 = 𝐹𝑜 = ) → ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩ = ⟨(TopSet‘ndx), (ordTop‘ )⟩)
2521, 24preq12d 4766 . . . . . 6 ((𝑓 = 𝐹𝑜 = ) → {⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩})
2622opeq2d 4904 . . . . . . 7 ((𝑓 = 𝐹𝑜 = ) → ⟨(le‘ndx), 𝑜⟩ = ⟨(le‘ndx), ⟩)
27 id 22 . . . . . . . . . 10 (𝑓 = 𝐹𝑓 = 𝐹)
28 rabeq 3458 . . . . . . . . . . 11 (𝑓 = 𝐹 → {𝑦𝑓 ∣ (𝑦𝑥) = ∅} = {𝑦𝐹 ∣ (𝑦𝑥) = ∅})
2928unieqd 4944 . . . . . . . . . 10 (𝑓 = 𝐹 {𝑦𝑓 ∣ (𝑦𝑥) = ∅} = {𝑦𝐹 ∣ (𝑦𝑥) = ∅})
3027, 29mpteq12dv 5257 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅}) = (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅}))
3130adantr 480 . . . . . . . 8 ((𝑓 = 𝐹𝑜 = ) → (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅}) = (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅}))
3231opeq2d 4904 . . . . . . 7 ((𝑓 = 𝐹𝑜 = ) → ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩ = ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩)
3326, 32preq12d 4766 . . . . . 6 ((𝑓 = 𝐹𝑜 = ) → {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩} = {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
3425, 33uneq12d 4192 . . . . 5 ((𝑓 = 𝐹𝑜 = ) → ({⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} ∪ {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
3514, 19, 34csbied2 3961 . . . 4 (𝑓 = 𝐹{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} / 𝑜({⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} ∪ {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
36 df-ipo 18598 . . . 4 toInc = (𝑓 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} / 𝑜({⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} ∪ {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩}))
37 prex 5452 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∈ V
38 prex 5452 . . . . 5 {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩} ∈ V
3937, 38unex 7779 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}) ∈ V
4035, 36, 39fvmpt 7029 . . 3 (𝐹 ∈ V → (toInc‘𝐹) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
412, 40eqtrid 2792 . 2 (𝐹 ∈ V → 𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
421, 41syl 17 1 (𝐹𝑉𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘ )⟩} ∪ {⟨(le‘ndx), ⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  csb 3921  cun 3974  cin 3975  wss 3976  c0 4352  {cpr 4650  cop 4654   cuni 4931  {copab 5228  cmpt 5249   × cxp 5698  cfv 6573  ndxcnx 17240  Basecbs 17258  TopSetcts 17317  lecple 17318  occoc 17319  ordTopcordt 17559  toInccipo 18597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ipo 18598
This theorem is referenced by:  ipobas  18601  ipolerval  18602  ipotset  18603
  Copyright terms: Public domain W3C validator