| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipostr | Structured version Visualization version GIF version | ||
| Description: The structure of df-ipo 18543 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipostr | ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12256 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | basendx 17242 | . . 3 ⊢ (Base‘ndx) = 1 | |
| 3 | 1lt9 12451 | . . 3 ⊢ 1 < 9 | |
| 4 | 9nn 12343 | . . 3 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17371 | . . 3 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 1, 2, 3, 4, 5 | strle2 17183 | . 2 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈1, 9〉 |
| 7 | 10nn 12729 | . . 3 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17385 | . . 3 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12521 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 11 | 0lt1 11764 | . . . 4 ⊢ 0 < 1 | |
| 12 | 9, 10, 1, 11 | declt 12741 | . . 3 ⊢ ;10 < ;11 |
| 13 | 9, 1 | decnncl 12733 | . . 3 ⊢ ;11 ∈ ℕ |
| 14 | ocndx 17400 | . . 3 ⊢ (oc‘ndx) = ;11 | |
| 15 | 7, 8, 12, 13, 14 | strle2 17183 | . 2 ⊢ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉} Struct 〈;10, ;11〉 |
| 16 | 9lt10 12844 | . 2 ⊢ 9 < ;10 | |
| 17 | 6, 15, 16 | strleun 17181 | 1 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3929 {cpr 4608 〈cop 4612 class class class wbr 5124 ‘cfv 6536 0cc0 11134 1c1 11135 9c9 12307 ;cdc 12713 Struct cstr 17170 ndxcnx 17217 Basecbs 17233 TopSetcts 17282 lecple 17283 occoc 17284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 |
| This theorem is referenced by: ipobas 18546 ipolerval 18547 ipotset 18548 |
| Copyright terms: Public domain | W3C validator |