| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipostr | Structured version Visualization version GIF version | ||
| Description: The structure of df-ipo 18487 is a structure defining indices up to 11. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipostr | ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12197 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | basendx 17188 | . . 3 ⊢ (Base‘ndx) = 1 | |
| 3 | 1lt9 12387 | . . 3 ⊢ 1 < 9 | |
| 4 | 9nn 12284 | . . 3 ⊢ 9 ∈ ℕ | |
| 5 | tsetndx 17315 | . . 3 ⊢ (TopSet‘ndx) = 9 | |
| 6 | 1, 2, 3, 4, 5 | strle2 17129 | . 2 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈1, 9〉 |
| 7 | 10nn 12665 | . . 3 ⊢ ;10 ∈ ℕ | |
| 8 | plendx 17329 | . . 3 ⊢ (le‘ndx) = ;10 | |
| 9 | 1nn0 12458 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 10 | 0nn0 12457 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 11 | 0lt1 11700 | . . . 4 ⊢ 0 < 1 | |
| 12 | 9, 10, 1, 11 | declt 12677 | . . 3 ⊢ ;10 < ;11 |
| 13 | 9, 1 | decnncl 12669 | . . 3 ⊢ ;11 ∈ ℕ |
| 14 | ocndx 17344 | . . 3 ⊢ (oc‘ndx) = ;11 | |
| 15 | 7, 8, 12, 13, 14 | strle2 17129 | . 2 ⊢ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉} Struct 〈;10, ;11〉 |
| 16 | 9lt10 12780 | . 2 ⊢ 9 < ;10 | |
| 17 | 6, 15, 16 | strleun 17127 | 1 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉} ∪ {〈(le‘ndx), ≤ 〉, 〈(oc‘ndx), ⊥ 〉}) Struct 〈1, ;11〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 {cpr 4591 〈cop 4595 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 9c9 12248 ;cdc 12649 Struct cstr 17116 ndxcnx 17163 Basecbs 17179 TopSetcts 17226 lecple 17227 occoc 17228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-tset 17239 df-ple 17240 df-ocomp 17241 |
| This theorem is referenced by: ipobas 18490 ipolerval 18491 ipotset 18492 |
| Copyright terms: Public domain | W3C validator |