Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipole | Structured version Visualization version GIF version |
Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
ipoval.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipole.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
ipole | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12 4671 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌}) | |
2 | 1 | sseq1d 3952 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ({𝑥, 𝑦} ⊆ 𝐹 ↔ {𝑋, 𝑌} ⊆ 𝐹)) |
3 | sseq12 3948 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) | |
4 | 2, 3 | anbi12d 631 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦) ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
5 | eqid 2738 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} | |
6 | 4, 5 | brabga 5447 | . . 3 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
7 | 6 | 3adant1 1129 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
8 | ipole.l | . . . . 5 ⊢ ≤ = (le‘𝐼) | |
9 | ipoval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
10 | 9 | ipolerval 18250 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
11 | 8, 10 | eqtr4id 2797 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) |
12 | 11 | breqd 5085 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
13 | 12 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
14 | prssi 4754 | . . . 4 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) | |
15 | 14 | 3adant1 1129 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) |
16 | 15 | biantrurd 533 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ⊆ 𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
17 | 7, 13, 16 | 3bitr4d 311 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {cpr 4563 class class class wbr 5074 {copab 5136 ‘cfv 6433 lecple 16969 toInccipo 18245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ple 16982 df-ocomp 16983 df-ipo 18246 |
This theorem is referenced by: ipolt 18253 ipopos 18254 isipodrs 18255 ipodrsfi 18257 mrelatglb 18278 mrelatglb0 18279 mrelatlub 18280 thlleval 20905 pwrssmgc 31278 nsgmgc 31597 ipolublem 46272 ipoglblem 46275 |
Copyright terms: Public domain | W3C validator |