MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipole Structured version   Visualization version   GIF version

Theorem ipole 18549
Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
ipole.l = (le‘𝐼)
Assertion
Ref Expression
ipole ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋𝑌))

Proof of Theorem ipole
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq12 4716 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
21sseq1d 3995 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ⊆ 𝐹 ↔ {𝑋, 𝑌} ⊆ 𝐹))
3 sseq12 3991 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑦𝑋𝑌))
42, 3anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
5 eqid 2736 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
64, 5brabga 5514 . . 3 ((𝑋𝐹𝑌𝐹) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
763adant1 1130 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
8 ipole.l . . . . 5 = (le‘𝐼)
9 ipoval.i . . . . . 6 𝐼 = (toInc‘𝐹)
109ipolerval 18547 . . . . 5 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
118, 10eqtr4id 2790 . . . 4 (𝐹𝑉 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})
1211breqd 5135 . . 3 (𝐹𝑉 → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌))
13123ad2ant1 1133 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}𝑌))
14 prssi 4802 . . . 4 ((𝑋𝐹𝑌𝐹) → {𝑋, 𝑌} ⊆ 𝐹)
15143adant1 1130 . . 3 ((𝐹𝑉𝑋𝐹𝑌𝐹) → {𝑋, 𝑌} ⊆ 𝐹)
1615biantrurd 532 . 2 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹𝑋𝑌)))
177, 13, 163bitr4d 311 1 ((𝐹𝑉𝑋𝐹𝑌𝐹) → (𝑋 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  {cpr 4608   class class class wbr 5124  {copab 5186  cfv 6536  lecple 17283  toInccipo 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ipo 18543
This theorem is referenced by:  ipolt  18550  ipopos  18551  isipodrs  18552  ipodrsfi  18554  mrelatglb  18575  mrelatglb0  18576  mrelatlub  18577  thlleval  21663  pwrssmgc  32985  nsgmgc  33432  ipolublem  48927  ipoglblem  48930
  Copyright terms: Public domain W3C validator