| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipole | Structured version Visualization version GIF version | ||
| Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| ipoval.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipole.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| ipole | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12 4716 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌}) | |
| 2 | 1 | sseq1d 3995 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ({𝑥, 𝑦} ⊆ 𝐹 ↔ {𝑋, 𝑌} ⊆ 𝐹)) |
| 3 | sseq12 3991 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦) ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 5 | eqid 2736 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} | |
| 6 | 4, 5 | brabga 5514 | . . 3 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 8 | ipole.l | . . . . 5 ⊢ ≤ = (le‘𝐼) | |
| 9 | ipoval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 10 | 9 | ipolerval 18547 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 11 | 8, 10 | eqtr4id 2790 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) |
| 12 | 11 | breqd 5135 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
| 13 | 12 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
| 14 | prssi 4802 | . . . 4 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) | |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) |
| 16 | 15 | biantrurd 532 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ⊆ 𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 17 | 7, 13, 16 | 3bitr4d 311 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {cpr 4608 class class class wbr 5124 {copab 5186 ‘cfv 6536 lecple 17283 toInccipo 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 df-ipo 18543 |
| This theorem is referenced by: ipolt 18550 ipopos 18551 isipodrs 18552 ipodrsfi 18554 mrelatglb 18575 mrelatglb0 18576 mrelatlub 18577 thlleval 21663 pwrssmgc 32985 nsgmgc 33432 ipolublem 48927 ipoglblem 48930 |
| Copyright terms: Public domain | W3C validator |