| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipole | Structured version Visualization version GIF version | ||
| Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| ipoval.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipole.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| ipole | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12 4687 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌}) | |
| 2 | 1 | sseq1d 3967 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ({𝑥, 𝑦} ⊆ 𝐹 ↔ {𝑋, 𝑌} ⊆ 𝐹)) |
| 3 | sseq12 3963 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦) ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 5 | eqid 2729 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} | |
| 6 | 4, 5 | brabga 5477 | . . 3 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 8 | ipole.l | . . . . 5 ⊢ ≤ = (le‘𝐼) | |
| 9 | ipoval.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 10 | 9 | ipolerval 18438 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 11 | 8, 10 | eqtr4id 2783 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) |
| 12 | 11 | breqd 5103 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
| 13 | 12 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}𝑌)) |
| 14 | prssi 4772 | . . . 4 ⊢ ((𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) | |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → {𝑋, 𝑌} ⊆ 𝐹) |
| 16 | 15 | biantrurd 532 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ⊆ 𝑌 ↔ ({𝑋, 𝑌} ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌))) |
| 17 | 7, 13, 16 | 3bitr4d 311 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹) → (𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 {cpr 4579 class class class wbr 5092 {copab 5154 ‘cfv 6482 lecple 17168 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-ipo 18434 |
| This theorem is referenced by: ipolt 18441 ipopos 18442 isipodrs 18443 ipodrsfi 18445 mrelatglb 18466 mrelatglb0 18467 mrelatlub 18468 thlleval 21605 pwrssmgc 32951 nsgmgc 33358 ipolublem 48990 ipoglblem 48993 |
| Copyright terms: Public domain | W3C validator |