MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipolerval Structured version   Visualization version   GIF version

Theorem ipolerval 18438
Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipolerval (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐼,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ipolerval
StepHypRef Expression
1 simpl 482 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → {𝑥, 𝑦} ⊆ 𝐹)
2 vex 3440 . . . . . . . 8 𝑥 ∈ V
3 vex 3440 . . . . . . . 8 𝑦 ∈ V
42, 3prss 4771 . . . . . . 7 ((𝑥𝐹𝑦𝐹) ↔ {𝑥, 𝑦} ⊆ 𝐹)
51, 4sylibr 234 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → (𝑥𝐹𝑦𝐹))
65ssopab2i 5493 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
7 df-xp 5625 . . . . 5 (𝐹 × 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
86, 7sseqtrri 3985 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹)
9 sqxpexg 7691 . . . 4 (𝐹𝑉 → (𝐹 × 𝐹) ∈ V)
10 ssexg 5262 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹) ∧ (𝐹 × 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
118, 9, 10sylancr 587 . . 3 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
12 ipostr 18435 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}) Struct ⟨1, 11⟩
13 pleid 17271 . . . 4 le = Slot (le‘ndx)
14 snsspr1 4765 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}
15 ssun2 4130 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1614, 15sstri 3945 . . . 4 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1712, 13, 16strfv 17114 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
1811, 17syl 17 . 2 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
19 ipoval.i . . . 4 𝐼 = (toInc‘𝐹)
20 eqid 2729 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
2119, 20ipoval 18436 . . 3 (𝐹𝑉𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
2221fveq2d 6826 . 2 (𝐹𝑉 → (le‘𝐼) = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
2318, 22eqtr4d 2767 1 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cun 3901  cin 3902  wss 3903  c0 4284  {csn 4577  {cpr 4579  cop 4583   cuni 4858  {copab 5154  cmpt 5173   × cxp 5617  cfv 6482  1c1 11010  cdc 12591  ndxcnx 17104  Basecbs 17120  TopSetcts 17167  lecple 17168  occoc 17169  ordTopcordt 17403  toInccipo 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ipo 18434
This theorem is referenced by:  ipotset  18439  ipole  18440  thlle  21604
  Copyright terms: Public domain W3C validator