MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipolerval Structured version   Visualization version   GIF version

Theorem ipolerval 17636
Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipolerval (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐼,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ipolerval
StepHypRef Expression
1 simpl 475 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → {𝑥, 𝑦} ⊆ 𝐹)
2 vex 3420 . . . . . . . 8 𝑥 ∈ V
3 vex 3420 . . . . . . . 8 𝑦 ∈ V
42, 3prss 4632 . . . . . . 7 ((𝑥𝐹𝑦𝐹) ↔ {𝑥, 𝑦} ⊆ 𝐹)
51, 4sylibr 226 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → (𝑥𝐹𝑦𝐹))
65ssopab2i 5293 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
7 df-xp 5417 . . . . 5 (𝐹 × 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
86, 7sseqtr4i 3896 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹)
9 sqxpexg 7300 . . . 4 (𝐹𝑉 → (𝐹 × 𝐹) ∈ V)
10 ssexg 5087 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹) ∧ (𝐹 × 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
118, 9, 10sylancr 579 . . 3 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
12 ipostr 17633 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}) Struct ⟨1, 11⟩
13 pleid 16529 . . . 4 le = Slot (le‘ndx)
14 snsspr1 4626 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}
15 ssun2 4040 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1614, 15sstri 3869 . . . 4 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1712, 13, 16strfv 16393 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
1811, 17syl 17 . 2 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
19 ipoval.i . . . 4 𝐼 = (toInc‘𝐹)
20 eqid 2780 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
2119, 20ipoval 17634 . . 3 (𝐹𝑉𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
2221fveq2d 6508 . 2 (𝐹𝑉 → (le‘𝐼) = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
2318, 22eqtr4d 2819 1 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  {crab 3094  Vcvv 3417  cun 3829  cin 3830  wss 3831  c0 4181  {csn 4444  {cpr 4446  cop 4450   cuni 4717  {copab 4996  cmpt 5013   × cxp 5409  cfv 6193  1c1 10342  cdc 11917  ndxcnx 16342  Basecbs 16345  TopSetcts 16433  lecple 16434  occoc 16435  ordTopcordt 16634  toInccipo 17631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-fz 12715  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-tset 16446  df-ple 16447  df-ocomp 16448  df-ipo 17632
This theorem is referenced by:  ipotset  17637  ipole  17638  thlle  20558
  Copyright terms: Public domain W3C validator