Detailed syntax breakdown of Definition df-mbf
| Step | Hyp | Ref
| Expression |
| 1 | | cmbf 25649 |
. 2
class
MblFn |
| 2 | | cre 15136 |
. . . . . . . . 9
class
ℜ |
| 3 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 4 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 5 | 2, 4 | ccom 5689 |
. . . . . . . 8
class (ℜ
∘ 𝑓) |
| 6 | 5 | ccnv 5684 |
. . . . . . 7
class ◡(ℜ ∘ 𝑓) |
| 7 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | 6, 8 | cima 5688 |
. . . . . 6
class (◡(ℜ ∘ 𝑓) “ 𝑥) |
| 10 | | cvol 25498 |
. . . . . . 7
class
vol |
| 11 | 10 | cdm 5685 |
. . . . . 6
class dom
vol |
| 12 | 9, 11 | wcel 2108 |
. . . . 5
wff (◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol |
| 13 | | cim 15137 |
. . . . . . . . 9
class
ℑ |
| 14 | 13, 4 | ccom 5689 |
. . . . . . . 8
class (ℑ
∘ 𝑓) |
| 15 | 14 | ccnv 5684 |
. . . . . . 7
class ◡(ℑ ∘ 𝑓) |
| 16 | 15, 8 | cima 5688 |
. . . . . 6
class (◡(ℑ ∘ 𝑓) “ 𝑥) |
| 17 | 16, 11 | wcel 2108 |
. . . . 5
wff (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol |
| 18 | 12, 17 | wa 395 |
. . . 4
wff ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) |
| 19 | | cioo 13387 |
. . . . 5
class
(,) |
| 20 | 19 | crn 5686 |
. . . 4
class ran
(,) |
| 21 | 18, 7, 20 | wral 3061 |
. . 3
wff
∀𝑥 ∈ ran
(,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) |
| 22 | | cc 11153 |
. . . 4
class
ℂ |
| 23 | | cr 11154 |
. . . 4
class
ℝ |
| 24 | | cpm 8867 |
. . . 4
class
↑pm |
| 25 | 22, 23, 24 | co 7431 |
. . 3
class (ℂ
↑pm ℝ) |
| 26 | 21, 3, 25 | crab 3436 |
. 2
class {𝑓 ∈ (ℂ
↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} |
| 27 | 1, 26 | wceq 1540 |
1
wff MblFn =
{𝑓 ∈ (ℂ
↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} |