| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1val | Structured version Visualization version GIF version | ||
| Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1val | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq 5927 | . . . . 5 ⊢ (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹) | |
| 2 | 1 | difeq1d 4105 | . . . 4 ⊢ (𝑓 = 𝐹 → (ran 𝑓 ∖ {0}) = (ran 𝐹 ∖ {0})) |
| 3 | cnveq 5864 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 4 | 3 | imaeq1d 6057 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ {𝑥}) = (◡𝐹 “ {𝑥})) |
| 5 | 4 | fveq2d 6890 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (vol‘(◡𝑓 “ {𝑥})) = (vol‘(◡𝐹 “ {𝑥}))) |
| 6 | 5 | oveq2d 7429 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 ∈ (ran 𝑓 ∖ {0})) → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 8 | 2, 7 | sumeq12dv 15724 | . . 3 ⊢ (𝑓 = 𝐹 → Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 9 | df-itg1 25591 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
| 10 | sumex 15706 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6996 | . 2 ⊢ (𝐹 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 12 | sumex 15706 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
| 13 | 12, 9 | dmmpti 6692 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
| 14 | 11, 13 | eleq2s 2851 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3419 ∖ cdif 3928 {csn 4606 ◡ccnv 5664 dom cdm 5665 ran crn 5666 “ cima 5668 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 ℝcr 11136 0cc0 11137 · cmul 11142 Σcsu 15704 volcvol 25434 MblFncmbf 25585 ∫1citg1 25586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-seq 14025 df-sum 15705 df-itg1 25591 |
| This theorem is referenced by: itg1val2 25655 itg1cl 25656 itg1ge0 25657 itg10 25659 itg11 25662 itg1addlem5 25671 itg1mulc 25675 itg10a 25681 itg1ge0a 25682 itg1climres 25685 |
| Copyright terms: Public domain | W3C validator |