![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1val | Structured version Visualization version GIF version |
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
itg1val | β’ (πΉ β dom β«1 β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5935 | . . . . 5 β’ (π = πΉ β ran π = ran πΉ) | |
2 | 1 | difeq1d 4121 | . . . 4 β’ (π = πΉ β (ran π β {0}) = (ran πΉ β {0})) |
3 | cnveq 5873 | . . . . . . . 8 β’ (π = πΉ β β‘π = β‘πΉ) | |
4 | 3 | imaeq1d 6058 | . . . . . . 7 β’ (π = πΉ β (β‘π β {π₯}) = (β‘πΉ β {π₯})) |
5 | 4 | fveq2d 6895 | . . . . . 6 β’ (π = πΉ β (volβ(β‘π β {π₯})) = (volβ(β‘πΉ β {π₯}))) |
6 | 5 | oveq2d 7424 | . . . . 5 β’ (π = πΉ β (π₯ Β· (volβ(β‘π β {π₯}))) = (π₯ Β· (volβ(β‘πΉ β {π₯})))) |
7 | 6 | adantr 481 | . . . 4 β’ ((π = πΉ β§ π₯ β (ran π β {0})) β (π₯ Β· (volβ(β‘π β {π₯}))) = (π₯ Β· (volβ(β‘πΉ β {π₯})))) |
8 | 2, 7 | sumeq12dv 15651 | . . 3 β’ (π = πΉ β Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯}))) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
9 | df-itg1 25136 | . . 3 β’ β«1 = (π β {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} β¦ Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯})))) | |
10 | sumex 15633 | . . 3 β’ Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯}))) β V | |
11 | 8, 9, 10 | fvmpt 6998 | . 2 β’ (πΉ β {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
12 | sumex 15633 | . . 3 β’ Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯}))) β V | |
13 | 12, 9 | dmmpti 6694 | . 2 β’ dom β«1 = {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} |
14 | 11, 13 | eleq2s 2851 | 1 β’ (πΉ β dom β«1 β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 β cdif 3945 {csn 4628 β‘ccnv 5675 dom cdm 5676 ran crn 5677 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7408 Fincfn 8938 βcr 11108 0cc0 11109 Β· cmul 11114 Ξ£csu 15631 volcvol 24979 MblFncmbf 25130 β«1citg1 25131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-sum 15632 df-itg1 25136 |
This theorem is referenced by: itg1val2 25200 itg1cl 25201 itg1ge0 25202 itg10 25204 itg11 25207 itg1addlem5 25217 itg1mulc 25221 itg10a 25227 itg1ge0a 25228 itg1climres 25231 |
Copyright terms: Public domain | W3C validator |