| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1val | Structured version Visualization version GIF version | ||
| Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1val | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq 5903 | . . . . 5 ⊢ (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹) | |
| 2 | 1 | difeq1d 4091 | . . . 4 ⊢ (𝑓 = 𝐹 → (ran 𝑓 ∖ {0}) = (ran 𝐹 ∖ {0})) |
| 3 | cnveq 5840 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 4 | 3 | imaeq1d 6033 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ {𝑥}) = (◡𝐹 “ {𝑥})) |
| 5 | 4 | fveq2d 6865 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (vol‘(◡𝑓 “ {𝑥})) = (vol‘(◡𝐹 “ {𝑥}))) |
| 6 | 5 | oveq2d 7406 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 ∈ (ran 𝑓 ∖ {0})) → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 8 | 2, 7 | sumeq12dv 15679 | . . 3 ⊢ (𝑓 = 𝐹 → Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 9 | df-itg1 25528 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
| 10 | sumex 15661 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . 2 ⊢ (𝐹 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 12 | sumex 15661 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
| 13 | 12, 9 | dmmpti 6665 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
| 14 | 11, 13 | eleq2s 2847 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 {csn 4592 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℝcr 11074 0cc0 11075 · cmul 11080 Σcsu 15659 volcvol 25371 MblFncmbf 25522 ∫1citg1 25523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-sum 15660 df-itg1 25528 |
| This theorem is referenced by: itg1val2 25592 itg1cl 25593 itg1ge0 25594 itg10 25596 itg11 25599 itg1addlem5 25608 itg1mulc 25612 itg10a 25618 itg1ge0a 25619 itg1climres 25622 |
| Copyright terms: Public domain | W3C validator |