MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val Structured version   Visualization version   GIF version

Theorem itg1val 25600
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
itg1val (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable group:   𝑥,𝐹

Proof of Theorem itg1val
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rneq 5882 . . . . 5 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
21difeq1d 4078 . . . 4 (𝑓 = 𝐹 → (ran 𝑓 ∖ {0}) = (ran 𝐹 ∖ {0}))
3 cnveq 5820 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 6014 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
54fveq2d 6830 . . . . . 6 (𝑓 = 𝐹 → (vol‘(𝑓 “ {𝑥})) = (vol‘(𝐹 “ {𝑥})))
65oveq2d 7369 . . . . 5 (𝑓 = 𝐹 → (𝑥 · (vol‘(𝑓 “ {𝑥}))) = (𝑥 · (vol‘(𝐹 “ {𝑥}))))
76adantr 480 . . . 4 ((𝑓 = 𝐹𝑥 ∈ (ran 𝑓 ∖ {0})) → (𝑥 · (vol‘(𝑓 “ {𝑥}))) = (𝑥 · (vol‘(𝐹 “ {𝑥}))))
82, 7sumeq12dv 15631 . . 3 (𝑓 = 𝐹 → Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
9 df-itg1 25537 . . 3 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
10 sumex 15613 . . 3 Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ V
118, 9, 10fvmpt 6934 . 2 (𝐹 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
12 sumex 15613 . . 3 Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) ∈ V
1312, 9dmmpti 6630 . 2 dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
1411, 13eleq2s 2846 1 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  cdif 3902  {csn 4579  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  cr 11027  0cc0 11028   · cmul 11033  Σcsu 15611  volcvol 25380  MblFncmbf 25531  1citg1 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-sum 15612  df-itg1 25537
This theorem is referenced by:  itg1val2  25601  itg1cl  25602  itg1ge0  25603  itg10  25605  itg11  25608  itg1addlem5  25617  itg1mulc  25621  itg10a  25627  itg1ge0a  25628  itg1climres  25631
  Copyright terms: Public domain W3C validator