| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1val | Structured version Visualization version GIF version | ||
| Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1val | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq 5880 | . . . . 5 ⊢ (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹) | |
| 2 | 1 | difeq1d 4074 | . . . 4 ⊢ (𝑓 = 𝐹 → (ran 𝑓 ∖ {0}) = (ran 𝐹 ∖ {0})) |
| 3 | cnveq 5817 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 4 | 3 | imaeq1d 6012 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ {𝑥}) = (◡𝐹 “ {𝑥})) |
| 5 | 4 | fveq2d 6832 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (vol‘(◡𝑓 “ {𝑥})) = (vol‘(◡𝐹 “ {𝑥}))) |
| 6 | 5 | oveq2d 7368 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 ∈ (ran 𝑓 ∖ {0})) → (𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 8 | 2, 7 | sumeq12dv 15615 | . . 3 ⊢ (𝑓 = 𝐹 → Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 9 | df-itg1 25549 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
| 10 | sumex 15597 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6935 | . 2 ⊢ (𝐹 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| 12 | sumex 15597 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
| 13 | 12, 9 | dmmpti 6630 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
| 14 | 11, 13 | eleq2s 2851 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 {csn 4575 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℝcr 11012 0cc0 11013 · cmul 11018 Σcsu 15595 volcvol 25392 MblFncmbf 25543 ∫1citg1 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-seq 13911 df-sum 15596 df-itg1 25549 |
| This theorem is referenced by: itg1val2 25613 itg1cl 25614 itg1ge0 25615 itg10 25617 itg11 25620 itg1addlem5 25629 itg1mulc 25633 itg10a 25639 itg1ge0a 25640 itg1climres 25643 |
| Copyright terms: Public domain | W3C validator |