MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val Structured version   Visualization version   GIF version

Theorem itg1val 25743
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
itg1val (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable group:   𝑥,𝐹

Proof of Theorem itg1val
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rneq 5954 . . . . 5 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
21difeq1d 4138 . . . 4 (𝑓 = 𝐹 → (ran 𝑓 ∖ {0}) = (ran 𝐹 ∖ {0}))
3 cnveq 5891 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 6084 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ {𝑥}) = (𝐹 “ {𝑥}))
54fveq2d 6918 . . . . . 6 (𝑓 = 𝐹 → (vol‘(𝑓 “ {𝑥})) = (vol‘(𝐹 “ {𝑥})))
65oveq2d 7454 . . . . 5 (𝑓 = 𝐹 → (𝑥 · (vol‘(𝑓 “ {𝑥}))) = (𝑥 · (vol‘(𝐹 “ {𝑥}))))
76adantr 480 . . . 4 ((𝑓 = 𝐹𝑥 ∈ (ran 𝑓 ∖ {0})) → (𝑥 · (vol‘(𝑓 “ {𝑥}))) = (𝑥 · (vol‘(𝐹 “ {𝑥}))))
82, 7sumeq12dv 15748 . . 3 (𝑓 = 𝐹 → Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
9 df-itg1 25680 . . 3 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
10 sumex 15730 . . 3 Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ V
118, 9, 10fvmpt 7023 . 2 (𝐹 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
12 sumex 15730 . . 3 Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) ∈ V
1312, 9dmmpti 6720 . 2 dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
1411, 13eleq2s 2859 1 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  {crab 3436  cdif 3963  {csn 4634  ccnv 5692  dom cdm 5693  ran crn 5694  cima 5696  wf 6565  cfv 6569  (class class class)co 7438  Fincfn 8993  cr 11161  0cc0 11162   · cmul 11167  Σcsu 15728  volcvol 25523  MblFncmbf 25674  1citg1 25675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-seq 14049  df-sum 15729  df-itg1 25680
This theorem is referenced by:  itg1val2  25744  itg1cl  25745  itg1ge0  25746  itg10  25748  itg11  25751  itg1addlem5  25761  itg1mulc  25765  itg10a  25771  itg1ge0a  25772  itg1climres  25775
  Copyright terms: Public domain W3C validator