MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isi1f Structured version   Visualization version   GIF version

Theorem isi1f 25728
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because 1 is the first preparation function for our final definition (see df-itg 25677); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
isi1f (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))

Proof of Theorem isi1f
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6728 . . 3 (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
2 rneq 5961 . . . 4 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
32eleq1d 2829 . . 3 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
4 cnveq 5898 . . . . . 6 (𝑔 = 𝐹𝑔 = 𝐹)
54imaeq1d 6088 . . . . 5 (𝑔 = 𝐹 → (𝑔 “ (ℝ ∖ {0})) = (𝐹 “ (ℝ ∖ {0})))
65fveq2d 6924 . . . 4 (𝑔 = 𝐹 → (vol‘(𝑔 “ (ℝ ∖ {0}))) = (vol‘(𝐹 “ (ℝ ∖ {0}))))
76eleq1d 2829 . . 3 (𝑔 = 𝐹 → ((vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
81, 3, 73anbi123d 1436 . 2 (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
9 sumex 15736 . . 3 Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) ∈ V
10 df-itg1 25674 . . 3 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
119, 10dmmpti 6724 . 2 dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
128, 11elrab2 3711 1 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  {csn 4648  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184   · cmul 11189  Σcsu 15734  volcvol 25517  MblFncmbf 25668  1citg1 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-sum 15735  df-itg1 25674
This theorem is referenced by:  i1fmbf  25729  i1ff  25730  i1frn  25731  i1fima2  25733  i1fd  25735
  Copyright terms: Public domain W3C validator