Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 24787); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
isi1f | ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6581 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) | |
2 | rneq 5845 | . . . 4 ⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
4 | cnveq 5782 | . . . . . 6 ⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) | |
5 | 4 | imaeq1d 5968 | . . . . 5 ⊢ (𝑔 = 𝐹 → (◡𝑔 “ (ℝ ∖ {0})) = (◡𝐹 “ (ℝ ∖ {0}))) |
6 | 5 | fveq2d 6778 | . . . 4 ⊢ (𝑔 = 𝐹 → (vol‘(◡𝑔 “ (ℝ ∖ {0}))) = (vol‘(◡𝐹 “ (ℝ ∖ {0})))) |
7 | 6 | eleq1d 2823 | . . 3 ⊢ (𝑔 = 𝐹 → ((vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
8 | 1, 3, 7 | 3anbi123d 1435 | . 2 ⊢ (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
9 | sumex 15399 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
10 | df-itg1 24784 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
11 | 9, 10 | dmmpti 6577 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
12 | 8, 11 | elrab2 3627 | 1 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3884 {csn 4561 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℝcr 10870 0cc0 10871 · cmul 10876 Σcsu 15397 volcvol 24627 MblFncmbf 24778 ∫1citg1 24779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-sum 15398 df-itg1 24784 |
This theorem is referenced by: i1fmbf 24839 i1ff 24840 i1frn 24841 i1fima2 24843 i1fd 24845 |
Copyright terms: Public domain | W3C validator |