Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 24692); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
isi1f | ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6565 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) | |
2 | rneq 5834 | . . . 4 ⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
4 | cnveq 5771 | . . . . . 6 ⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) | |
5 | 4 | imaeq1d 5957 | . . . . 5 ⊢ (𝑔 = 𝐹 → (◡𝑔 “ (ℝ ∖ {0})) = (◡𝐹 “ (ℝ ∖ {0}))) |
6 | 5 | fveq2d 6760 | . . . 4 ⊢ (𝑔 = 𝐹 → (vol‘(◡𝑔 “ (ℝ ∖ {0}))) = (vol‘(◡𝐹 “ (ℝ ∖ {0})))) |
7 | 6 | eleq1d 2823 | . . 3 ⊢ (𝑔 = 𝐹 → ((vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
8 | 1, 3, 7 | 3anbi123d 1434 | . 2 ⊢ (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
9 | sumex 15327 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
10 | df-itg1 24689 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
11 | 9, 10 | dmmpti 6561 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
12 | 8, 11 | elrab2 3620 | 1 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 {csn 4558 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℝcr 10801 0cc0 10802 · cmul 10807 Σcsu 15325 volcvol 24532 MblFncmbf 24683 ∫1citg1 24684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-sum 15326 df-itg1 24689 |
This theorem is referenced by: i1fmbf 24744 i1ff 24745 i1frn 24746 i1fima2 24748 i1fd 24750 |
Copyright terms: Public domain | W3C validator |