MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isi1f Structured version   Visualization version   GIF version

Theorem isi1f 25415
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 25364); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
isi1f (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:β„βŸΆβ„ ∧ ran 𝐹 ∈ Fin ∧ (volβ€˜(◑𝐹 β€œ (ℝ βˆ– {0}))) ∈ ℝ)))

Proof of Theorem isi1f
Dummy variables 𝑓 𝑔 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6698 . . 3 (𝑔 = 𝐹 β†’ (𝑔:β„βŸΆβ„ ↔ 𝐹:β„βŸΆβ„))
2 rneq 5935 . . . 4 (𝑔 = 𝐹 β†’ ran 𝑔 = ran 𝐹)
32eleq1d 2818 . . 3 (𝑔 = 𝐹 β†’ (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
4 cnveq 5873 . . . . . 6 (𝑔 = 𝐹 β†’ ◑𝑔 = ◑𝐹)
54imaeq1d 6058 . . . . 5 (𝑔 = 𝐹 β†’ (◑𝑔 β€œ (ℝ βˆ– {0})) = (◑𝐹 β€œ (ℝ βˆ– {0})))
65fveq2d 6895 . . . 4 (𝑔 = 𝐹 β†’ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) = (volβ€˜(◑𝐹 β€œ (ℝ βˆ– {0}))))
76eleq1d 2818 . . 3 (𝑔 = 𝐹 β†’ ((volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ ↔ (volβ€˜(◑𝐹 β€œ (ℝ βˆ– {0}))) ∈ ℝ))
81, 3, 73anbi123d 1436 . 2 (𝑔 = 𝐹 β†’ ((𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ) ↔ (𝐹:β„βŸΆβ„ ∧ ran 𝐹 ∈ Fin ∧ (volβ€˜(◑𝐹 β€œ (ℝ βˆ– {0}))) ∈ ℝ)))
9 sumex 15638 . . 3 Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))) ∈ V
10 df-itg1 25361 . . 3 ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
119, 10dmmpti 6694 . 2 dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)}
128, 11elrab2 3686 1 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:β„βŸΆβ„ ∧ ran 𝐹 ∈ Fin ∧ (volβ€˜(◑𝐹 β€œ (ℝ βˆ– {0}))) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432   βˆ– cdif 3945  {csn 4628  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Fincfn 8941  β„cr 11111  0cc0 11112   Β· cmul 11117  Ξ£csu 15636  volcvol 25204  MblFncmbf 25355  βˆ«1citg1 25356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-sum 15637  df-itg1 25361
This theorem is referenced by:  i1fmbf  25416  i1ff  25417  i1frn  25418  i1fima2  25420  i1fd  25422
  Copyright terms: Public domain W3C validator