MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isi1f Structured version   Visualization version   GIF version

Theorem isi1f 25723
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because 1 is the first preparation function for our final definition (see df-itg 25672); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
isi1f (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))

Proof of Theorem isi1f
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6717 . . 3 (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
2 rneq 5950 . . . 4 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
32eleq1d 2824 . . 3 (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin))
4 cnveq 5887 . . . . . 6 (𝑔 = 𝐹𝑔 = 𝐹)
54imaeq1d 6079 . . . . 5 (𝑔 = 𝐹 → (𝑔 “ (ℝ ∖ {0})) = (𝐹 “ (ℝ ∖ {0})))
65fveq2d 6911 . . . 4 (𝑔 = 𝐹 → (vol‘(𝑔 “ (ℝ ∖ {0}))) = (vol‘(𝐹 “ (ℝ ∖ {0}))))
76eleq1d 2824 . . 3 (𝑔 = 𝐹 → ((vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
81, 3, 73anbi123d 1435 . 2 (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
9 sumex 15721 . . 3 Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))) ∈ V
10 df-itg1 25669 . . 3 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
119, 10dmmpti 6713 . 2 dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
128, 11elrab2 3698 1 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cdif 3960  {csn 4631  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cr 11152  0cc0 11153   · cmul 11158  Σcsu 15719  volcvol 25512  MblFncmbf 25663  1citg1 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-sum 15720  df-itg1 25669
This theorem is referenced by:  i1fmbf  25724  i1ff  25725  i1frn  25726  i1fima2  25728  i1fd  25730
  Copyright terms: Public domain W3C validator