| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 25524); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| isi1f | ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6666 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) | |
| 2 | rneq 5900 | . . . 4 ⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| 4 | cnveq 5837 | . . . . . 6 ⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) | |
| 5 | 4 | imaeq1d 6030 | . . . . 5 ⊢ (𝑔 = 𝐹 → (◡𝑔 “ (ℝ ∖ {0})) = (◡𝐹 “ (ℝ ∖ {0}))) |
| 6 | 5 | fveq2d 6862 | . . . 4 ⊢ (𝑔 = 𝐹 → (vol‘(◡𝑔 “ (ℝ ∖ {0}))) = (vol‘(◡𝐹 “ (ℝ ∖ {0})))) |
| 7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑔 = 𝐹 → ((vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 8 | 1, 3, 7 | 3anbi123d 1438 | . 2 ⊢ (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| 9 | sumex 15654 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
| 10 | df-itg1 25521 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
| 11 | 9, 10 | dmmpti 6662 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
| 12 | 8, 11 | elrab2 3662 | 1 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 {csn 4589 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 0cc0 11068 · cmul 11073 Σcsu 15652 volcvol 25364 MblFncmbf 25515 ∫1citg1 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-sum 15653 df-itg1 25521 |
| This theorem is referenced by: i1fmbf 25576 i1ff 25577 i1frn 25578 i1fima2 25580 i1fd 25582 |
| Copyright terms: Public domain | W3C validator |