![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version |
Description: The predicate "πΉ is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom πΉ β dom β«1 to represent this concept because β«1 is the first preparation function for our final definition β« (see df-itg 25131); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
isi1f | β’ (πΉ β dom β«1 β (πΉ β MblFn β§ (πΉ:ββΆβ β§ ran πΉ β Fin β§ (volβ(β‘πΉ β (β β {0}))) β β))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6695 | . . 3 β’ (π = πΉ β (π:ββΆβ β πΉ:ββΆβ)) | |
2 | rneq 5933 | . . . 4 β’ (π = πΉ β ran π = ran πΉ) | |
3 | 2 | eleq1d 2818 | . . 3 β’ (π = πΉ β (ran π β Fin β ran πΉ β Fin)) |
4 | cnveq 5871 | . . . . . 6 β’ (π = πΉ β β‘π = β‘πΉ) | |
5 | 4 | imaeq1d 6056 | . . . . 5 β’ (π = πΉ β (β‘π β (β β {0})) = (β‘πΉ β (β β {0}))) |
6 | 5 | fveq2d 6892 | . . . 4 β’ (π = πΉ β (volβ(β‘π β (β β {0}))) = (volβ(β‘πΉ β (β β {0})))) |
7 | 6 | eleq1d 2818 | . . 3 β’ (π = πΉ β ((volβ(β‘π β (β β {0}))) β β β (volβ(β‘πΉ β (β β {0}))) β β)) |
8 | 1, 3, 7 | 3anbi123d 1436 | . 2 β’ (π = πΉ β ((π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β) β (πΉ:ββΆβ β§ ran πΉ β Fin β§ (volβ(β‘πΉ β (β β {0}))) β β))) |
9 | sumex 15630 | . . 3 β’ Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯}))) β V | |
10 | df-itg1 25128 | . . 3 β’ β«1 = (π β {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} β¦ Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯})))) | |
11 | 9, 10 | dmmpti 6691 | . 2 β’ dom β«1 = {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} |
12 | 8, 11 | elrab2 3685 | 1 β’ (πΉ β dom β«1 β (πΉ β MblFn β§ (πΉ:ββΆβ β§ ran πΉ β Fin β§ (volβ(β‘πΉ β (β β {0}))) β β))) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 β cdif 3944 {csn 4627 β‘ccnv 5674 dom cdm 5675 ran crn 5676 β cima 5678 βΆwf 6536 βcfv 6540 (class class class)co 7405 Fincfn 8935 βcr 11105 0cc0 11106 Β· cmul 11111 Ξ£csu 15628 volcvol 24971 MblFncmbf 25122 β«1citg1 25123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-sum 15629 df-itg1 25128 |
This theorem is referenced by: i1fmbf 25183 i1ff 25184 i1frn 25185 i1fima2 25187 i1fd 25189 |
Copyright terms: Public domain | W3C validator |