| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 25551); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| isi1f | ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6629 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) | |
| 2 | rneq 5875 | . . . 4 ⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| 4 | cnveq 5812 | . . . . . 6 ⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) | |
| 5 | 4 | imaeq1d 6007 | . . . . 5 ⊢ (𝑔 = 𝐹 → (◡𝑔 “ (ℝ ∖ {0})) = (◡𝐹 “ (ℝ ∖ {0}))) |
| 6 | 5 | fveq2d 6826 | . . . 4 ⊢ (𝑔 = 𝐹 → (vol‘(◡𝑔 “ (ℝ ∖ {0}))) = (vol‘(◡𝐹 “ (ℝ ∖ {0})))) |
| 7 | 6 | eleq1d 2816 | . . 3 ⊢ (𝑔 = 𝐹 → ((vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 8 | 1, 3, 7 | 3anbi123d 1438 | . 2 ⊢ (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| 9 | sumex 15595 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
| 10 | df-itg1 25548 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
| 11 | 9, 10 | dmmpti 6625 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
| 12 | 8, 11 | elrab2 3645 | 1 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 {csn 4573 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℝcr 11005 0cc0 11006 · cmul 11011 Σcsu 15593 volcvol 25391 MblFncmbf 25542 ∫1citg1 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-sum 15594 df-itg1 25548 |
| This theorem is referenced by: i1fmbf 25603 i1ff 25604 i1frn 25605 i1fima2 25607 i1fd 25609 |
| Copyright terms: Public domain | W3C validator |