MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-kgen Structured version   Visualization version   GIF version

Definition df-kgen 23258
Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. π‘₯ ∈ (π‘˜Genβ€˜π‘—), iff the preimage of π‘₯ is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
df-kgen π‘˜Gen = (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))})
Distinct variable group:   𝑗,π‘˜,π‘₯

Detailed syntax breakdown of Definition df-kgen
StepHypRef Expression
1 ckgen 23257 . 2 class π‘˜Gen
2 vj . . 3 setvar 𝑗
3 ctop 22615 . . 3 class Top
42cv 1540 . . . . . . . 8 class 𝑗
5 vk . . . . . . . . 9 setvar π‘˜
65cv 1540 . . . . . . . 8 class π‘˜
7 crest 17370 . . . . . . . 8 class β†Ύt
84, 6, 7co 7411 . . . . . . 7 class (𝑗 β†Ύt π‘˜)
9 ccmp 23110 . . . . . . 7 class Comp
108, 9wcel 2106 . . . . . 6 wff (𝑗 β†Ύt π‘˜) ∈ Comp
11 vx . . . . . . . . 9 setvar π‘₯
1211cv 1540 . . . . . . . 8 class π‘₯
1312, 6cin 3947 . . . . . . 7 class (π‘₯ ∩ π‘˜)
1413, 8wcel 2106 . . . . . 6 wff (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜)
1510, 14wi 4 . . . . 5 wff ((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))
164cuni 4908 . . . . . 6 class βˆͺ 𝑗
1716cpw 4602 . . . . 5 class 𝒫 βˆͺ 𝑗
1815, 5, 17wral 3061 . . . 4 wff βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))
1918, 11, 17crab 3432 . . 3 class {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))}
202, 3, 19cmpt 5231 . 2 class (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))})
211, 20wceq 1541 1 wff π‘˜Gen = (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))})
Colors of variables: wff setvar class
This definition is referenced by:  kgenval  23259  kgeni  23261  kgenf  23265
  Copyright terms: Public domain W3C validator