Detailed syntax breakdown of Definition df-kgen
| Step | Hyp | Ref
| Expression |
| 1 | | ckgen 23541 |
. 2
class
𝑘Gen |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | ctop 22899 |
. . 3
class
Top |
| 4 | 2 | cv 1539 |
. . . . . . . 8
class 𝑗 |
| 5 | | vk |
. . . . . . . . 9
setvar 𝑘 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑘 |
| 7 | | crest 17465 |
. . . . . . . 8
class
↾t |
| 8 | 4, 6, 7 | co 7431 |
. . . . . . 7
class (𝑗 ↾t 𝑘) |
| 9 | | ccmp 23394 |
. . . . . . 7
class
Comp |
| 10 | 8, 9 | wcel 2108 |
. . . . . 6
wff (𝑗 ↾t 𝑘) ∈ Comp |
| 11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 13 | 12, 6 | cin 3950 |
. . . . . . 7
class (𝑥 ∩ 𝑘) |
| 14 | 13, 8 | wcel 2108 |
. . . . . 6
wff (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘) |
| 15 | 10, 14 | wi 4 |
. . . . 5
wff ((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) |
| 16 | 4 | cuni 4907 |
. . . . . 6
class ∪ 𝑗 |
| 17 | 16 | cpw 4600 |
. . . . 5
class 𝒫
∪ 𝑗 |
| 18 | 15, 5, 17 | wral 3061 |
. . . 4
wff
∀𝑘 ∈
𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) |
| 19 | 18, 11, 17 | crab 3436 |
. . 3
class {𝑥 ∈ 𝒫 ∪ 𝑗
∣ ∀𝑘 ∈
𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} |
| 20 | 2, 3, 19 | cmpt 5225 |
. 2
class (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ ∀𝑘 ∈
𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) |
| 21 | 1, 20 | wceq 1540 |
1
wff
𝑘Gen = (𝑗
∈ Top ↦ {𝑥
∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) |