![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgenval | Structured version Visualization version GIF version |
Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenval | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-kgen 23563 | . 2 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
2 | unieq 4942 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | toponuni 22941 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | eqcomd 2746 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 = 𝑋) |
5 | 2, 4 | sylan9eqr 2802 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
6 | 5 | pweqd 4639 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
7 | oveq1 7455 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑘) = (𝐽 ↾t 𝑘)) | |
8 | 7 | eleq1d 2829 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t 𝑘) ∈ Comp)) |
9 | 7 | eleq2d 2830 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘) ↔ (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝐽 → (((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
12 | 6, 11 | raleqbidv 3354 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
13 | 6, 12 | rabeqbidv 3462 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
14 | topontop 22940 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
15 | toponmax 22953 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
16 | pwexg 5396 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
17 | rabexg 5355 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ∈ V) | |
18 | 15, 16, 17 | 3syl 18 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ∈ V) |
19 | 1, 13, 14, 18 | fvmptd2 7037 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ∩ cin 3975 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 TopOnctopon 22937 Compccmp 23415 𝑘Genckgen 23562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-top 22921 df-topon 22938 df-kgen 23563 |
This theorem is referenced by: elkgen 23565 kgentopon 23567 |
Copyright terms: Public domain | W3C validator |