MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenval Structured version   Visualization version   GIF version

Theorem kgenval 23451
Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenval (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋,𝑥

Proof of Theorem kgenval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-kgen 23450 . 2 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
2 unieq 4869 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
3 toponuni 22830 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43eqcomd 2739 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
52, 4sylan9eqr 2790 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝑋)
65pweqd 4566 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝒫 𝑗 = 𝒫 𝑋)
7 oveq1 7359 . . . . . . 7 (𝑗 = 𝐽 → (𝑗t 𝑘) = (𝐽t 𝑘))
87eleq1d 2818 . . . . . 6 (𝑗 = 𝐽 → ((𝑗t 𝑘) ∈ Comp ↔ (𝐽t 𝑘) ∈ Comp))
97eleq2d 2819 . . . . . 6 (𝑗 = 𝐽 → ((𝑥𝑘) ∈ (𝑗t 𝑘) ↔ (𝑥𝑘) ∈ (𝐽t 𝑘)))
108, 9imbi12d 344 . . . . 5 (𝑗 = 𝐽 → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
1110adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
126, 11raleqbidv 3313 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
136, 12rabeqbidv 3414 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
14 topontop 22829 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15 toponmax 22842 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
16 pwexg 5318 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
17 rabexg 5277 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
1815, 16, 173syl 18 . 2 (𝐽 ∈ (TopOn‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
191, 13, 14, 18fvmptd2 6943 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cin 3897  𝒫 cpw 4549   cuni 4858  cfv 6486  (class class class)co 7352  t crest 17326  Topctop 22809  TopOnctopon 22826  Compccmp 23302  𝑘Genckgen 23449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-top 22810  df-topon 22827  df-kgen 23450
This theorem is referenced by:  elkgen  23452  kgentopon  23454
  Copyright terms: Public domain W3C validator