MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenval Structured version   Visualization version   GIF version

Theorem kgenval 22140
Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenval (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋,𝑥

Proof of Theorem kgenval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-kgen 22139 . 2 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
2 unieq 4811 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
3 toponuni 21519 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43eqcomd 2804 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
52, 4sylan9eqr 2855 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝑋)
65pweqd 4516 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝒫 𝑗 = 𝒫 𝑋)
7 oveq1 7142 . . . . . . 7 (𝑗 = 𝐽 → (𝑗t 𝑘) = (𝐽t 𝑘))
87eleq1d 2874 . . . . . 6 (𝑗 = 𝐽 → ((𝑗t 𝑘) ∈ Comp ↔ (𝐽t 𝑘) ∈ Comp))
97eleq2d 2875 . . . . . 6 (𝑗 = 𝐽 → ((𝑥𝑘) ∈ (𝑗t 𝑘) ↔ (𝑥𝑘) ∈ (𝐽t 𝑘)))
108, 9imbi12d 348 . . . . 5 (𝑗 = 𝐽 → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
1110adantl 485 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
126, 11raleqbidv 3354 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
136, 12rabeqbidv 3433 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
14 topontop 21518 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15 toponmax 21531 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
16 pwexg 5244 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
17 rabexg 5198 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
1815, 16, 173syl 18 . 2 (𝐽 ∈ (TopOn‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
191, 13, 14, 18fvmptd2 6753 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cin 3880  𝒫 cpw 4497   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  Compccmp 21991  𝑘Genckgen 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-top 21499  df-topon 21516  df-kgen 22139
This theorem is referenced by:  elkgen  22141  kgentopon  22143
  Copyright terms: Public domain W3C validator