| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgenval | Structured version Visualization version GIF version | ||
| Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgenval | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-kgen 23542 | . 2 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
| 2 | unieq 4918 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 3 | toponuni 22920 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | eqcomd 2743 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 = 𝑋) |
| 5 | 2, 4 | sylan9eqr 2799 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
| 6 | 5 | pweqd 4617 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
| 7 | oveq1 7438 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑘) = (𝐽 ↾t 𝑘)) | |
| 8 | 7 | eleq1d 2826 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t 𝑘) ∈ Comp)) |
| 9 | 7 | eleq2d 2827 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘) ↔ (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝐽 → (((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
| 12 | 6, 11 | raleqbidv 3346 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
| 13 | 6, 12 | rabeqbidv 3455 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
| 14 | topontop 22919 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 15 | toponmax 22932 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 16 | pwexg 5378 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
| 17 | rabexg 5337 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ∈ V) | |
| 18 | 15, 16, 17 | 3syl 18 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ∈ V) |
| 19 | 1, 13, 14, 18 | fvmptd2 7024 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 Vcvv 3480 ∩ cin 3950 𝒫 cpw 4600 ∪ cuni 4907 ‘cfv 6561 (class class class)co 7431 ↾t crest 17465 Topctop 22899 TopOnctopon 22916 Compccmp 23394 𝑘Genckgen 23541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-top 22900 df-topon 22917 df-kgen 23542 |
| This theorem is referenced by: elkgen 23544 kgentopon 23546 |
| Copyright terms: Public domain | W3C validator |