| Metamath
Proof Explorer Theorem List (p. 233 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lmss 23201 | Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.) |
| ⊢ 𝐾 = (𝐽 ↾t 𝑌) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑃 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) | ||
| Theorem | sslm 23202 | A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (⇝𝑡‘𝐾) ⊆ (⇝𝑡‘𝐽)) | ||
| Theorem | lmres 23203 | A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm ℂ)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘𝐽)𝑃)) | ||
| Theorem | lmff 23204* | If 𝐹 converges, there is some upper integer set on which 𝐹 is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | ||
| Theorem | lmcls 23205* | Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | lmcld 23206* | Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑆) | ||
| Theorem | lmcnp 23207 | The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) | ||
| Theorem | lmcn 23208 | The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) | ||
| Syntax | ct0 23209 | Extend class notation with the class of all T0 spaces. |
| class Kol2 | ||
| Syntax | ct1 23210 | Extend class notation to include T1 spaces (also called Fréchet spaces). |
| class Fre | ||
| Syntax | cha 23211 | Extend class notation with the class of all Hausdorff spaces. |
| class Haus | ||
| Syntax | creg 23212 | Extend class notation with the class of all regular topologies. |
| class Reg | ||
| Syntax | cnrm 23213 | Extend class notation with the class of all normal topologies. |
| class Nrm | ||
| Syntax | ccnrm 23214 | Extend class notation with the class of all completely normal topologies. |
| class CNrm | ||
| Syntax | cpnrm 23215 | Extend class notation with the class of all perfectly normal topologies. |
| class PNrm | ||
| Definition | df-t0 23216* | Define T0 or Kolmogorov spaces. A T0 space satisfies a kind of "topological extensionality" principle (compare ax-ext 2701): any two points which are members of the same open sets are equal, or in contraposition, for any two distinct points there is an open set which contains one point but not the other. This differs from T1 spaces (see ist1-2 23250) in that in a T1 space you can choose which point will be in the open set and which outside; in a T0 space you only know that one of the two points is in the set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(∀𝑜 ∈ 𝑗 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)} | ||
| Definition | df-t1 23217* | The class of all T1 spaces, also called Fréchet spaces. Morris, Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007.) |
| ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | ||
| Definition | df-haus 23218* | Define the class of all Hausdorff (or T2) spaces. A Hausdorff space is a topology in which distinct points have disjoint open neighborhoods. Definition of Hausdorff space in [Munkres] p. 98. (Contributed by NM, 8-Mar-2007.) |
| ⊢ Haus = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} | ||
| Definition | df-reg 23219* | Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Reg = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | ||
| Definition | df-nrm 23220* | Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | ||
| Definition | df-cnrm 23221* | Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} | ||
| Definition | df-pnrm 23222* | Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a Gδ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} | ||
| Theorem | ist0 23223* | The predicate "is a T0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 23248. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | ist1 23224* | The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) | ||
| Theorem | ishaus 23225* | The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm 23226* | The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) | ||
| Theorem | t0sep 23227* | Any two topologically indistinguishable points in a T0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵)) | ||
| Theorem | t0dist 23228* | Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 ¬ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | ||
| Theorem | t1sncld 23229 | In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) | ||
| Theorem | t1ficld 23230 | In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | hausnei 23231* | Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | t0top 23232 | A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | ||
| Theorem | t1top 23233 | A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | ||
| Theorem | haustop 23234 | A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | ||
| Theorem | isreg 23235* | The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | ||
| Theorem | regtop 23236 | A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | ||
| Theorem | regsep 23237* | In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | ||
| Theorem | isnrm 23238* | The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | ||
| Theorem | nrmtop 23239 | A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | ||
| Theorem | cnrmtop 23240 | A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) | ||
| Theorem | iscnrm2 23241* | The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) | ||
| Theorem | ispnrm 23242* | The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) | ||
| Theorem | pnrmnrm 23243 | A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) | ||
| Theorem | pnrmtop 23244 | A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Top) | ||
| Theorem | pnrmcld 23245* | A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) | ||
| Theorem | pnrmopn 23246* | An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ∪ ran 𝑓) | ||
| Theorem | ist0-2 23247* | The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | ist0-3 23248* | The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) | ||
| Theorem | cnt0 23249 | The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2) | ||
| Theorem | ist1-2 23250* | An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | t1t0 23251 | A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | ||
| Theorem | ist1-3 23252* | A space is T1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∩ {𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜} = {𝑥})) | ||
| Theorem | cnt1 23253 | The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre) | ||
| Theorem | ishaus2 23254* | Express the predicate "𝐽 is a Hausdorff space." (Contributed by NM, 8-Mar-2007.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | haust1 23255 | A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | ||
| Theorem | hausnei2 23256* | The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | ||
| Theorem | cnhaus 23257 | The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) | ||
| Theorem | nrmsep3 23258* | In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵 ⊆ 𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) | ||
| Theorem | nrmsep2 23259* | In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) | ||
| Theorem | nrmsep 23260* | In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | isnrm2 23261* | An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) | ||
| Theorem | isnrm3 23262* | A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) | ||
| Theorem | cnrmi 23263 | A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) | ||
| Theorem | cnrmnrm 23264 | A completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Nrm) | ||
| Theorem | restcnrm 23265 | A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) | ||
| Theorem | resthauslem 23266 | Lemma for resthaus 23271 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) | ||
| Theorem | lpcls 23267 | The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | perfcls 23268 | A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) | ||
| Theorem | restt0 23269 | A subspace of a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Kol2 ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Kol2) | ||
| Theorem | restt1 23270 | A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Fre) | ||
| Theorem | resthaus 23271 | A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) | ||
| Theorem | t1sep2 23272* | Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) | ||
| Theorem | t1sep 23273* | Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) | ||
| Theorem | sncld 23274 | A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) | ||
| Theorem | sshauslem 23275 | Lemma for sshaus 23278 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) | ||
| Theorem | sst0 23276 | A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Kol2) | ||
| Theorem | sst1 23277 | A topology finer than a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Fre) | ||
| Theorem | sshaus 23278 | A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | ||
| Theorem | regsep2 23279* | In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | isreg2 23280* | A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) | ||
| Theorem | dnsconst 23281 | If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 6994). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) | ||
| Theorem | ordtt1 23282 | The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre) | ||
| Theorem | lmmo 23283 | A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | lmfun 23284 | The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | ||
| Theorem | dishaus 23285 | A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) | ||
| Theorem | ordthauslem 23286* | Lemma for ordthaus 23287. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | ||
| Theorem | ordthaus 23287 | The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus) | ||
| Theorem | xrhaus 23288 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ (ordTop‘ ≤ ) ∈ Haus | ||
| Syntax | ccmp 23289 | Extend class notation with the class of all compact spaces. |
| class Comp | ||
| Definition | df-cmp 23290* | Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of [BourbakiTop1] p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008.) |
| ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | ||
| Theorem | iscmp 23291* | The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcov 23292* | An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) | ||
| Theorem | cmpcov2 23293* | Rewrite cmpcov 23292 for the cover {𝑦 ∈ 𝐽 ∣ 𝜑}. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) | ||
| Theorem | cmpcovf 23294* | Combine cmpcov 23292 with ac6sfi 9189 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) | ||
| Theorem | cncmp 23295 | Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) | ||
| Theorem | fincmp 23296 | A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
| ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) | ||
| Theorem | 0cmp 23297 | The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
| ⊢ {∅} ∈ Comp | ||
| Theorem | cmptop 23298 | A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | ||
| Theorem | rncmp 23299 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | ||
| Theorem | imacmp 23300 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |