| Metamath
Proof Explorer Theorem List (p. 233 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cha 23201 | Extend class notation with the class of all Hausdorff spaces. |
| class Haus | ||
| Syntax | creg 23202 | Extend class notation with the class of all regular topologies. |
| class Reg | ||
| Syntax | cnrm 23203 | Extend class notation with the class of all normal topologies. |
| class Nrm | ||
| Syntax | ccnrm 23204 | Extend class notation with the class of all completely normal topologies. |
| class CNrm | ||
| Syntax | cpnrm 23205 | Extend class notation with the class of all perfectly normal topologies. |
| class PNrm | ||
| Definition | df-t0 23206* | Define T0 or Kolmogorov spaces. A T0 space satisfies a kind of "topological extensionality" principle (compare ax-ext 2702): any two points which are members of the same open sets are equal, or in contraposition, for any two distinct points there is an open set which contains one point but not the other. This differs from T1 spaces (see ist1-2 23240) in that in a T1 space you can choose which point will be in the open set and which outside; in a T0 space you only know that one of the two points is in the set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(∀𝑜 ∈ 𝑗 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)} | ||
| Definition | df-t1 23207* | The class of all T1 spaces, also called Fréchet spaces. Morris, Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007.) |
| ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | ||
| Definition | df-haus 23208* | Define the class of all Hausdorff (or T2) spaces. A Hausdorff space is a topology in which distinct points have disjoint open neighborhoods. Definition of Hausdorff space in [Munkres] p. 98. (Contributed by NM, 8-Mar-2007.) |
| ⊢ Haus = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} | ||
| Definition | df-reg 23209* | Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Reg = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | ||
| Definition | df-nrm 23210* | Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} | ||
| Definition | df-cnrm 23211* | Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} | ||
| Definition | df-pnrm 23212* | Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a Gδ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} | ||
| Theorem | ist0 23213* | The predicate "is a T0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 23238. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | ist1 23214* | The predicate "is a T1 space". (Contributed by FL, 18-Jun-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) | ||
| Theorem | ishaus 23215* | The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm 23216* | The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) | ||
| Theorem | t0sep 23217* | Any two topologically indistinguishable points in a T0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥) → 𝐴 = 𝐵)) | ||
| Theorem | t0dist 23218* | Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 ¬ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | ||
| Theorem | t1sncld 23219 | In a T1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) | ||
| Theorem | t1ficld 23220 | In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ⊆ 𝑋 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | hausnei 23221* | Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | t0top 23222 | A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | ||
| Theorem | t1top 23223 | A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | ||
| Theorem | haustop 23224 | A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | ||
| Theorem | isreg 23225* | The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | ||
| Theorem | regtop 23226 | A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | ||
| Theorem | regsep 23227* | In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | ||
| Theorem | isnrm 23228* | The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | ||
| Theorem | nrmtop 23229 | A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | ||
| Theorem | cnrmtop 23230 | A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) | ||
| Theorem | iscnrm2 23231* | The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽 ↾t 𝑥) ∈ Nrm)) | ||
| Theorem | ispnrm 23232* | The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) | ||
| Theorem | pnrmnrm 23233 | A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) | ||
| Theorem | pnrmtop 23234 | A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Top) | ||
| Theorem | pnrmcld 23235* | A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) | ||
| Theorem | pnrmopn 23236* | An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ∪ ran 𝑓) | ||
| Theorem | ist0-2 23237* | The predicate "is a T0 space". (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | ist0-3 23238* | The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) | ||
| Theorem | cnt0 23239 | The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2) | ||
| Theorem | ist1-2 23240* | An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | ||
| Theorem | t1t0 23241 | A T1 space is a T0 space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | ||
| Theorem | ist1-3 23242* | A space is T1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∩ {𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜} = {𝑥})) | ||
| Theorem | cnt1 23243 | The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre) | ||
| Theorem | ishaus2 23244* | Express the predicate "𝐽 is a Hausdorff space." (Contributed by NM, 8-Mar-2007.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | haust1 23245 | A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | ||
| Theorem | hausnei2 23246* | The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | ||
| Theorem | cnhaus 23247 | The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) | ||
| Theorem | nrmsep3 23248* | In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵 ⊆ 𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) | ||
| Theorem | nrmsep2 23249* | In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) | ||
| Theorem | nrmsep 23250* | In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | isnrm2 23251* | An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) | ||
| Theorem | isnrm3 23252* | A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) | ||
| Theorem | cnrmi 23253 | A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) | ||
| Theorem | cnrmnrm 23254 | A completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Nrm) | ||
| Theorem | restcnrm 23255 | A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) | ||
| Theorem | resthauslem 23256 | Lemma for resthaus 23261 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) | ||
| Theorem | lpcls 23257 | The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | perfcls 23258 | A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) | ||
| Theorem | restt0 23259 | A subspace of a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Kol2 ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Kol2) | ||
| Theorem | restt1 23260 | A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Fre) | ||
| Theorem | resthaus 23261 | A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) | ||
| Theorem | t1sep2 23262* | Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) | ||
| Theorem | t1sep 23263* | Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) | ||
| Theorem | sncld 23264 | A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) | ||
| Theorem | sshauslem 23265 | Lemma for sshaus 23268 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) | ||
| Theorem | sst0 23266 | A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Kol2) | ||
| Theorem | sst1 23267 | A topology finer than a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Fre) | ||
| Theorem | sshaus 23268 | A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | ||
| Theorem | regsep2 23269* | In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | isreg2 23270* | A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) | ||
| Theorem | dnsconst 23271 | If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7030). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) | ||
| Theorem | ordtt1 23272 | The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre) | ||
| Theorem | lmmo 23273 | A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | lmfun 23274 | The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | ||
| Theorem | dishaus 23275 | A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) | ||
| Theorem | ordthauslem 23276* | Lemma for ordthaus 23277. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | ||
| Theorem | ordthaus 23277 | The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus) | ||
| Theorem | xrhaus 23278 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ (ordTop‘ ≤ ) ∈ Haus | ||
| Syntax | ccmp 23279 | Extend class notation with the class of all compact spaces. |
| class Comp | ||
| Definition | df-cmp 23280* | Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of [BourbakiTop1] p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008.) |
| ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | ||
| Theorem | iscmp 23281* | The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcov 23282* | An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) | ||
| Theorem | cmpcov2 23283* | Rewrite cmpcov 23282 for the cover {𝑦 ∈ 𝐽 ∣ 𝜑}. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) | ||
| Theorem | cmpcovf 23284* | Combine cmpcov 23282 with ac6sfi 9237 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) | ||
| Theorem | cncmp 23285 | Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) | ||
| Theorem | fincmp 23286 | A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
| ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) | ||
| Theorem | 0cmp 23287 | The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
| ⊢ {∅} ∈ Comp | ||
| Theorem | cmptop 23288 | A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | ||
| Theorem | rncmp 23289 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | ||
| Theorem | imacmp 23290 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) | ||
| Theorem | discmp 23291 | A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp) | ||
| Theorem | cmpsublem 23292* | Lemma for cmpsub 23293. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪ (𝐽 ↾t 𝑆) = ∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) | ||
| Theorem | cmpsub 23293* | Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | ||
| Theorem | tgcmp 23294* | A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 23938, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcld 23295 | A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝑆) ∈ Comp) | ||
| Theorem | uncmp 23296 | The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) | ||
| Theorem | fiuncmp 23297* | A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝐽 ↾t 𝐵) ∈ Comp) → (𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵) ∈ Comp) | ||
| Theorem | sscmp 23298 | A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) | ||
| Theorem | hauscmplem 23299* | Lemma for hauscmp 23300. (Contributed by Mario Carneiro, 27-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) & ⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | ||
| Theorem | hauscmp 23300 | A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |