Home | Metamath
Proof Explorer Theorem List (p. 233 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnpfcf 23201* | A function 𝐹 is continuous at point 𝐴 iff 𝐹 respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) | ||
Theorem | cnfcf 23202* | Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) | ||
Theorem | flfcntr 23203 | A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) | ||
Theorem | alexsublem 23204* | Lemma for alexsub 23205. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ UFL) & ⊢ (𝜑 → 𝑋 = ∪ 𝐵) & ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) & ⊢ (𝜑 → 𝐹 ∈ (UFil‘𝑋)) & ⊢ (𝜑 → (𝐽 fLim 𝐹) = ∅) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | alexsub 23205* | The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23211 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ UFL) & ⊢ (𝜑 → 𝑋 = ∪ 𝐵) & ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) ⇒ ⊢ (𝜑 → 𝐽 ∈ Comp) | ||
Theorem | alexsubb 23206* | Biconditional form of the Alexander Subbase Theorem alexsub 23205. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦))) | ||
Theorem | alexsubALTlem1 23207* | Lemma for alexsubALT 23211. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) | ||
Theorem | alexsubALTlem2 23208* | Lemma for alexsubALT 23211. Every subset of a base which has no finite subcover is a subset of a maximal such collection. (Contributed by Jeff Hankins, 27-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = ∪ 𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎 ⊆ 𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = ∪ 𝑏)} ∪ {∅}) ¬ 𝑢 ⊊ 𝑣) | ||
Theorem | alexsubALTlem3 23209* | Lemma for alexsubALT 23211. If a point is covered by a collection taken from the base with no finite subcover, a set from the subbase can be added that covers the point so that the resulting collection has no finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) | ||
Theorem | alexsubALTlem4 23210* | Lemma for alexsubALT 23211. If any cover taken from a subbase has a finite subcover, any cover taken from the corresponding base has a finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 = (topGen‘(fi‘𝑥)) → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) → ∀𝑎 ∈ 𝒫 (fi‘𝑥)(𝑋 = ∪ 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = ∪ 𝑏))) | ||
Theorem | alexsubALT 23211* | The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) | ||
Theorem | ptcmplem1 23212* | Lemma for ptcmp 23218. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) ⇒ ⊢ (𝜑 → (𝑋 = ∪ (ran 𝑆 ∪ {𝑋}) ∧ (∏t‘𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))) | ||
Theorem | ptcmplem2 23213* | Lemma for ptcmp 23218. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪ (𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) | ||
Theorem | ptcmplem3 23214* | Lemma for ptcmp 23218. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) & ⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) | ||
Theorem | ptcmplem4 23215* | Lemma for ptcmp 23218. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) & ⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) & ⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} ⇒ ⊢ ¬ 𝜑 | ||
Theorem | ptcmplem5 23216* | Lemma for ptcmp 23218. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Comp) & ⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom card)) ⇒ ⊢ (𝜑 → (∏t‘𝐹) ∈ Comp) | ||
Theorem | ptcmpg 23217 | Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23218). (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) | ||
Theorem | ptcmp 23218 | Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp) → (∏t‘𝐹) ∈ Comp) | ||
Syntax | ccnext 23219 | Extend class notation with the continuous extension operation. |
class CnExt | ||
Definition | df-cnext 23220* | Define the continuous extension of a given function. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗) ↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) | ||
Theorem | cnextval 23221* | The function applying continuous extension to a given function 𝑓. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ (∪ 𝐾 ↑pm ∪ 𝐽) ↦ ∪ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) | ||
Theorem | cnextfval 23222* | The continuous extension of a given function 𝐹. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝑋)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | ||
Theorem | cnextrel 23223 | In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) | ||
Theorem | cnextfun 23224 | If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) | ||
Theorem | cnextfvval 23225* | The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) | ||
Theorem | cnextf 23226* | Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) | ||
Theorem | cnextcn 23227* | Extension by continuity. Theorem 1 of [BourbakiTop1] p. I.57. Given a topology 𝐽 on 𝐶, a subset 𝐴 dense in 𝐶, this states a condition for 𝐹 from 𝐴 to a regular space 𝐾 to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ Reg) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | cnextfres1 23228* | 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ Reg) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) ⇒ ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹) | ||
Theorem | cnextfres 23229 | 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
⊢ 𝐶 = ∪ 𝐽 & ⊢ 𝐵 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) | ||
Syntax | ctmd 23230 | Extend class notation with the class of all topological monoids. |
class TopMnd | ||
Syntax | ctgp 23231 | Extend class notation with the class of all topological groups. |
class TopGrp | ||
Definition | df-tmd 23232* | Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | ||
Definition | df-tgp 23233* | Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010.) |
⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} | ||
Theorem | istmd 23234 | The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐹 = (+𝑓‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | ||
Theorem | tmdmnd 23235 | A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | ||
Theorem | tmdtps 23236 | A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | ||
Theorem | istgp 23237 | The predicate "is a topological group". Definition 1 of [BourbakiTop1] p. III.1. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) | ||
Theorem | tgpgrp 23238 | A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | ||
Theorem | tgptmd 23239 | A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | ||
Theorem | tgptps 23240 | A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | ||
Theorem | tmdtopon 23241 | The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tgptopon 23242 | The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tmdcn 23243 | In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpcn 23244 | In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpinv 23245 | In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | grpinvhmeo 23246 | The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) | ||
Theorem | cnmpt1plusg 23247* | Continuity of the group sum; analogue of cnmpt12f 22826 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
Theorem | cnmpt2plusg 23248* | Continuity of the group sum; analogue of cnmpt22f 22835 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
Theorem | tmdcn2 23249* | Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) | ||
Theorem | tgpsubcn 23250 | In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | istgp2 23251 | A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | ||
Theorem | tmdmulg 23252* | In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg 23253* | In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg2 23254 | In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis 23988 to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → · ∈ ((𝒫 ℤ ×t 𝐽) Cn 𝐽)) | ||
Theorem | tmdgsum 23255* | In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when 𝐴 is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) | ||
Theorem | tmdgsum2 23256* | For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | ||
Theorem | oppgtmd 23257 | The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) | ||
Theorem | oppgtgp 23258 | The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp) | ||
Theorem | distgp 23259 | Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) | ||
Theorem | indistgp 23260 | Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) | ||
Theorem | efmndtmd 23261 | The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 23266. (Contributed by AV, 23-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd) | ||
Theorem | tmdlactcn 23262* | The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgplacthmeo 23263* | The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽Homeo𝐽)) | ||
Theorem | submtmd 23264 | A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd) | ||
Theorem | subgtgp 23265 | A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | symgtgp 23266 | The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp) | ||
Theorem | subgntr 23267 | A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 23269, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) | ||
Theorem | opnsubg 23268 | An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | clssubg 23269 | The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | ||
Theorem | clsnsg 23270 | The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) | ||
Theorem | cldsubg 23271 | A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) | ||
Theorem | tgpconncompeqg 23272* | The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | ||
Theorem | tgpconncomp 23273* | The identity component, the connected component containing the identity element, is a closed (conncompcld 22594) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺)) | ||
Theorem | tgpconncompss 23274* | The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) | ||
Theorem | ghmcnp 23275 | A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
Theorem | snclseqg 23276 | The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) | ||
Theorem | tgphaus 23277 | A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽))) | ||
Theorem | tgpt1 23278 | Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
Theorem | tgpt0 23279 | Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
Theorem | qustgpopn 23280* | A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) | ||
Theorem | qustgplem 23281* | Lemma for qustgp 23282. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) & ⊢ − = (𝑧 ∈ 𝑋, 𝑤 ∈ 𝑋 ↦ [(𝑧(-g‘𝐺)𝑤)](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgp 23282 | The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgphaus 23283 | The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) | ||
Theorem | prdstmdd 23284 | The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopMnd) | ||
Theorem | prdstgpd 23285 | The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopGrp) | ||
Syntax | ctsu 23286 | Extend class notation to include infinite group sums in a topological group. |
class tsums | ||
Definition | df-tsms 23287* | Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and ∪ (𝑊 tsums 𝐹) selects this unique element if it exists. (𝑊 tsums 𝐹) ≈ 1o is a way to say that the sum exists and is unique. Note that unlike Σ (df-sum 15407) and Σg (df-gsum 17162), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) | ||
Theorem | tsmsfbas 23288* | The collection of all sets of the form 𝐹(𝑧) = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ 𝐿 = ran 𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐿 ∈ (fBas‘𝑆)) | ||
Theorem | tsmslem1 23289 | The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) | ||
Theorem | tsmsval2 23290* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmsval 23291* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmspropd 23292 | The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18419 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) | ||
Theorem | eltsms 23293* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | ||
Theorem | tsmsi 23294* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | ||
Theorem | tsmscl 23295 | A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) | ||
Theorem | haustsms 23296* | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | ||
Theorem | haustsms2 23297 | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) | ||
Theorem | tsmscls 23298 | One half of tgptsmscls 23310, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) | ||
Theorem | tsmsgsum 23299 | The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) | ||
Theorem | tsmsid 23300 | If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |