| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgenf | Structured version Visualization version GIF version | ||
| Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgenf | ⊢ 𝑘Gen:Top⟶Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7695 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
| 2 | 1 | pwex 5330 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ V |
| 3 | 2 | rabex 5289 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V) |
| 5 | df-kgen 23397 | . . . 4 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))})) |
| 7 | kgenftop 23403 | . . . 4 ⊢ (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top) |
| 9 | 4, 6, 8 | fmpt2d 7078 | . 2 ⊢ (⊤ → 𝑘Gen:Top⟶Top) |
| 10 | 9 | mptru 1547 | 1 ⊢ 𝑘Gen:Top⟶Top |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ∩ cin 3910 𝒫 cpw 4559 ∪ cuni 4867 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↾t crest 17359 Topctop 22756 Compccmp 23249 𝑘Genckgen 23396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-en 8896 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22757 df-topon 22774 df-bases 22809 df-cmp 23250 df-kgen 23397 |
| This theorem is referenced by: kgentop 23405 kgenidm 23410 iskgen2 23411 kgen2cn 23422 |
| Copyright terms: Public domain | W3C validator |