Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kgenf | Structured version Visualization version GIF version |
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenf | ⊢ 𝑘Gen:Top⟶Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 7570 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
2 | 1 | pwex 5298 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ V |
3 | 2 | rabex 5251 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V) |
5 | df-kgen 22593 | . . . 4 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))})) |
7 | kgenftop 22599 | . . . 4 ⊢ (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top) |
9 | 4, 6, 8 | fmpt2d 6979 | . 2 ⊢ (⊤ → 𝑘Gen:Top⟶Top) |
10 | 9 | mptru 1546 | 1 ⊢ 𝑘Gen:Top⟶Top |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ∩ cin 3882 𝒫 cpw 4530 ∪ cuni 4836 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 Compccmp 22445 𝑘Genckgen 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-kgen 22593 |
This theorem is referenced by: kgentop 22601 kgenidm 22606 iskgen2 22607 kgen2cn 22618 |
Copyright terms: Public domain | W3C validator |