| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgenf | Structured version Visualization version GIF version | ||
| Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgenf | ⊢ 𝑘Gen:Top⟶Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7672 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
| 2 | 1 | pwex 5316 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ V |
| 3 | 2 | rabex 5275 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V) |
| 5 | df-kgen 23449 | . . . 4 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))})) |
| 7 | kgenftop 23455 | . . . 4 ⊢ (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top) |
| 9 | 4, 6, 8 | fmpt2d 7057 | . 2 ⊢ (⊤ → 𝑘Gen:Top⟶Top) |
| 10 | 9 | mptru 1548 | 1 ⊢ 𝑘Gen:Top⟶Top |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∩ cin 3896 𝒫 cpw 4547 ∪ cuni 4856 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22808 Compccmp 23301 𝑘Genckgen 23448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cmp 23302 df-kgen 23449 |
| This theorem is referenced by: kgentop 23457 kgenidm 23462 iskgen2 23463 kgen2cn 23474 |
| Copyright terms: Public domain | W3C validator |