MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenf Structured version   Visualization version   GIF version

Theorem kgenf 23549
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenf 𝑘Gen:Top⟶Top

Proof of Theorem kgenf
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 7759 . . . . . 6 𝑗 ∈ V
21pwex 5380 . . . . 5 𝒫 𝑗 ∈ V
32rabex 5339 . . . 4 {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} ∈ V
43a1i 11 . . 3 ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} ∈ V)
5 df-kgen 23542 . . . 4 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
65a1i 11 . . 3 (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))}))
7 kgenftop 23548 . . . 4 (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top)
87adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top)
94, 6, 8fmpt2d 7144 . 2 (⊤ → 𝑘Gen:Top⟶Top)
109mptru 1547 1 𝑘Gen:Top⟶Top
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  cin 3950  𝒫 cpw 4600   cuni 4907  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  Compccmp 23394  𝑘Genckgen 23541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-kgen 23542
This theorem is referenced by:  kgentop  23550  kgenidm  23555  iskgen2  23556  kgen2cn  23567
  Copyright terms: Public domain W3C validator