![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgenf | Structured version Visualization version GIF version |
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenf | β’ πGen:TopβΆTop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 7733 | . . . . . 6 β’ βͺ π β V | |
2 | 1 | pwex 5378 | . . . . 5 β’ π« βͺ π β V |
3 | 2 | rabex 5332 | . . . 4 β’ {π₯ β π« βͺ π β£ βπ β π« βͺ π((π βΎt π) β Comp β (π₯ β© π) β (π βΎt π))} β V |
4 | 3 | a1i 11 | . . 3 β’ ((β€ β§ π β Top) β {π₯ β π« βͺ π β£ βπ β π« βͺ π((π βΎt π) β Comp β (π₯ β© π) β (π βΎt π))} β V) |
5 | df-kgen 23358 | . . . 4 β’ πGen = (π β Top β¦ {π₯ β π« βͺ π β£ βπ β π« βͺ π((π βΎt π) β Comp β (π₯ β© π) β (π βΎt π))}) | |
6 | 5 | a1i 11 | . . 3 β’ (β€ β πGen = (π β Top β¦ {π₯ β π« βͺ π β£ βπ β π« βͺ π((π βΎt π) β Comp β (π₯ β© π) β (π βΎt π))})) |
7 | kgenftop 23364 | . . . 4 β’ (π₯ β Top β (πGenβπ₯) β Top) | |
8 | 7 | adantl 481 | . . 3 β’ ((β€ β§ π₯ β Top) β (πGenβπ₯) β Top) |
9 | 4, 6, 8 | fmpt2d 7125 | . 2 β’ (β€ β πGen:TopβΆTop) |
10 | 9 | mptru 1547 | 1 β’ πGen:TopβΆTop |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β€wtru 1541 β wcel 2105 βwral 3060 {crab 3431 Vcvv 3473 β© cin 3947 π« cpw 4602 βͺ cuni 4908 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7412 βΎt crest 17373 Topctop 22715 Compccmp 23210 πGenckgen 23357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-en 8946 df-fin 8949 df-fi 9412 df-rest 17375 df-topgen 17396 df-top 22716 df-topon 22733 df-bases 22769 df-cmp 23211 df-kgen 23358 |
This theorem is referenced by: kgentop 23366 kgenidm 23371 iskgen2 23372 kgen2cn 23383 |
Copyright terms: Public domain | W3C validator |