MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenf Structured version   Visualization version   GIF version

Theorem kgenf 23564
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenf 𝑘Gen:Top⟶Top

Proof of Theorem kgenf
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 7757 . . . . . 6 𝑗 ∈ V
21pwex 5385 . . . . 5 𝒫 𝑗 ∈ V
32rabex 5344 . . . 4 {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} ∈ V
43a1i 11 . . 3 ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} ∈ V)
5 df-kgen 23557 . . . 4 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
65a1i 11 . . 3 (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))}))
7 kgenftop 23563 . . . 4 (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top)
87adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top)
94, 6, 8fmpt2d 7143 . 2 (⊤ → 𝑘Gen:Top⟶Top)
109mptru 1543 1 𝑘Gen:Top⟶Top
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wtru 1537  wcel 2105  wral 3058  {crab 3432  Vcvv 3477  cin 3961  𝒫 cpw 4604   cuni 4911  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  t crest 17466  Topctop 22914  Compccmp 23409  𝑘Genckgen 23556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-en 8984  df-fin 8987  df-fi 9448  df-rest 17468  df-topgen 17489  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-kgen 23557
This theorem is referenced by:  kgentop  23565  kgenidm  23570  iskgen2  23571  kgen2cn  23582
  Copyright terms: Public domain W3C validator