| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgenf | Structured version Visualization version GIF version | ||
| Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgenf | ⊢ 𝑘Gen:Top⟶Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7718 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
| 2 | 1 | pwex 5338 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ V |
| 3 | 2 | rabex 5297 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((⊤ ∧ 𝑗 ∈ Top) → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))} ∈ V) |
| 5 | df-kgen 23428 | . . . 4 ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))})) |
| 7 | kgenftop 23434 | . . . 4 ⊢ (𝑥 ∈ Top → (𝑘Gen‘𝑥) ∈ Top) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ Top) → (𝑘Gen‘𝑥) ∈ Top) |
| 9 | 4, 6, 8 | fmpt2d 7099 | . 2 ⊢ (⊤ → 𝑘Gen:Top⟶Top) |
| 10 | 9 | mptru 1547 | 1 ⊢ 𝑘Gen:Top⟶Top |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ∩ cin 3916 𝒫 cpw 4566 ∪ cuni 4874 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 Compccmp 23280 𝑘Genckgen 23427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-kgen 23428 |
| This theorem is referenced by: kgentop 23436 kgenidm 23441 iskgen2 23442 kgen2cn 23453 |
| Copyright terms: Public domain | W3C validator |