Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Structured version   Visualization version   GIF version

Theorem kgeni 21749
 Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))

Proof of Theorem kgeni
Dummy variables 𝑦 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4044 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = (𝐴 ∩ (𝐾 𝐽))
2 in32 4046 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = ((𝐴 𝐽) ∩ 𝐾)
31, 2eqtr3i 2804 . . . 4 (𝐴 ∩ (𝐾 𝐽)) = ((𝐴 𝐽) ∩ 𝐾)
4 df-kgen 21746 . . . . . . . . . . . 12 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑦 ∈ 𝒫 𝑗((𝑗t 𝑦) ∈ Comp → (𝑥𝑦) ∈ (𝑗t 𝑦))})
54dmmptss 5885 . . . . . . . . . . 11 dom 𝑘Gen ⊆ Top
6 elfvdm 6478 . . . . . . . . . . 11 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ dom 𝑘Gen)
75, 6sseldi 3819 . . . . . . . . . 10 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ Top)
87adantr 474 . . . . . . . . 9 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ Top)
9 eqid 2778 . . . . . . . . . 10 𝐽 = 𝐽
109toptopon 21129 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
118, 10sylib 210 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ (TopOn‘ 𝐽))
12 simpl 476 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 ∈ (𝑘Gen‘𝐽))
13 elkgen 21748 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))))
1413biimpa 470 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐴 ∈ (𝑘Gen‘𝐽)) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1511, 12, 14syl2anc 579 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1615simpld 490 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 𝐽)
17 df-ss 3806 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
1816, 17sylib 210 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽) = 𝐴)
1918ineq1d 4036 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐴 𝐽) ∩ 𝐾) = (𝐴𝐾))
203, 19syl5eq 2826 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) = (𝐴𝐾))
21 cmptop 21607 . . . . . . . 8 ((𝐽t 𝐾) ∈ Comp → (𝐽t 𝐾) ∈ Top)
2221adantl 475 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
23 restrcl 21369 . . . . . . . 8 ((𝐽t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V))
2423simprd 491 . . . . . . 7 ((𝐽t 𝐾) ∈ Top → 𝐾 ∈ V)
2522, 24syl 17 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐾 ∈ V)
269restin 21378 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
278, 25, 26syl2anc 579 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
28 simpr 479 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
2927, 28eqeltrrd 2860 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t (𝐾 𝐽)) ∈ Comp)
30 oveq2 6930 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐽t 𝑦) = (𝐽t (𝐾 𝐽)))
3130eleq1d 2844 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐽t 𝑦) ∈ Comp ↔ (𝐽t (𝐾 𝐽)) ∈ Comp))
32 ineq2 4031 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐴𝑦) = (𝐴 ∩ (𝐾 𝐽)))
3332, 30eleq12d 2853 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐴𝑦) ∈ (𝐽t 𝑦) ↔ (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
3431, 33imbi12d 336 . . . . 5 (𝑦 = (𝐾 𝐽) → (((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)) ↔ ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))))
3515simprd 491 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))
36 inss2 4054 . . . . . 6 (𝐾 𝐽) ⊆ 𝐽
37 inex1g 5038 . . . . . . 7 (𝐾 ∈ V → (𝐾 𝐽) ∈ V)
38 elpwg 4387 . . . . . . 7 ((𝐾 𝐽) ∈ V → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3925, 37, 383syl 18 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
4036, 39mpbiri 250 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐾 𝐽) ∈ 𝒫 𝐽)
4134, 35, 40rspcdva 3517 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
4229, 41mpd 15 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))
4320, 42eqeltrrd 2860 . 2 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t (𝐾 𝐽)))
4443, 27eleqtrrd 2862 1 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ∀wral 3090  {crab 3094  Vcvv 3398   ∩ cin 3791   ⊆ wss 3792  𝒫 cpw 4379  ∪ cuni 4671  dom cdm 5355  ‘cfv 6135  (class class class)co 6922   ↾t crest 16467  Topctop 21105  TopOnctopon 21122  Compccmp 21598  𝑘Genckgen 21745 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-rest 16469  df-top 21106  df-topon 21123  df-cmp 21599  df-kgen 21746 This theorem is referenced by:  kgentopon  21750  kgencmp  21757  kgenidm  21759  llycmpkgen2  21762  1stckgen  21766  kgencn3  21770  txkgen  21864
 Copyright terms: Public domain W3C validator