MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Structured version   Visualization version   GIF version

Theorem kgeni 23561
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))

Proof of Theorem kgeni
Dummy variables 𝑦 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4236 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = (𝐴 ∩ (𝐾 𝐽))
2 in32 4238 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = ((𝐴 𝐽) ∩ 𝐾)
31, 2eqtr3i 2765 . . . 4 (𝐴 ∩ (𝐾 𝐽)) = ((𝐴 𝐽) ∩ 𝐾)
4 df-kgen 23558 . . . . . . . . . . 11 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑦 ∈ 𝒫 𝑗((𝑗t 𝑦) ∈ Comp → (𝑥𝑦) ∈ (𝑗t 𝑦))})
54mptrcl 7025 . . . . . . . . . 10 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ Top)
65adantr 480 . . . . . . . . 9 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ Top)
7 toptopon2 22940 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
86, 7sylib 218 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ (TopOn‘ 𝐽))
9 simpl 482 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 ∈ (𝑘Gen‘𝐽))
10 elkgen 23560 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))))
1110biimpa 476 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐴 ∈ (𝑘Gen‘𝐽)) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
128, 9, 11syl2anc 584 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1312simpld 494 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 𝐽)
14 dfss2 3981 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
1513, 14sylib 218 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽) = 𝐴)
1615ineq1d 4227 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐴 𝐽) ∩ 𝐾) = (𝐴𝐾))
173, 16eqtrid 2787 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) = (𝐴𝐾))
18 cmptop 23419 . . . . . . . 8 ((𝐽t 𝐾) ∈ Comp → (𝐽t 𝐾) ∈ Top)
1918adantl 481 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
20 restrcl 23181 . . . . . . . 8 ((𝐽t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V))
2120simprd 495 . . . . . . 7 ((𝐽t 𝐾) ∈ Top → 𝐾 ∈ V)
2219, 21syl 17 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐾 ∈ V)
23 eqid 2735 . . . . . . 7 𝐽 = 𝐽
2423restin 23190 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
256, 22, 24syl2anc 584 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
26 simpr 484 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
2725, 26eqeltrrd 2840 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t (𝐾 𝐽)) ∈ Comp)
28 oveq2 7439 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐽t 𝑦) = (𝐽t (𝐾 𝐽)))
2928eleq1d 2824 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐽t 𝑦) ∈ Comp ↔ (𝐽t (𝐾 𝐽)) ∈ Comp))
30 ineq2 4222 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐴𝑦) = (𝐴 ∩ (𝐾 𝐽)))
3130, 28eleq12d 2833 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐴𝑦) ∈ (𝐽t 𝑦) ↔ (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
3229, 31imbi12d 344 . . . . 5 (𝑦 = (𝐾 𝐽) → (((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)) ↔ ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))))
3312simprd 495 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))
34 inss2 4246 . . . . . 6 (𝐾 𝐽) ⊆ 𝐽
35 inex1g 5325 . . . . . . 7 (𝐾 ∈ V → (𝐾 𝐽) ∈ V)
36 elpwg 4608 . . . . . . 7 ((𝐾 𝐽) ∈ V → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3722, 35, 363syl 18 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3834, 37mpbiri 258 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐾 𝐽) ∈ 𝒫 𝐽)
3932, 33, 38rspcdva 3623 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
4027, 39mpd 15 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))
4117, 40eqeltrrd 2840 . 2 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t (𝐾 𝐽)))
4241, 25eleqtrrd 2842 1 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  cfv 6563  (class class class)co 7431  t crest 17467  Topctop 22915  TopOnctopon 22932  Compccmp 23410  𝑘Genckgen 23557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-rest 17469  df-top 22916  df-topon 22933  df-cmp 23411  df-kgen 23558
This theorem is referenced by:  kgentopon  23562  kgencmp  23569  kgenidm  23571  llycmpkgen2  23574  1stckgen  23578  kgencn3  23582  txkgen  23676
  Copyright terms: Public domain W3C validator