MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Structured version   Visualization version   GIF version

Theorem kgeni 22888
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))

Proof of Theorem kgeni
Dummy variables 𝑦 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 4179 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = (𝐴 ∩ (𝐾 𝐽))
2 in32 4181 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = ((𝐴 𝐽) ∩ 𝐾)
31, 2eqtr3i 2766 . . . 4 (𝐴 ∩ (𝐾 𝐽)) = ((𝐴 𝐽) ∩ 𝐾)
4 df-kgen 22885 . . . . . . . . . . 11 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑦 ∈ 𝒫 𝑗((𝑗t 𝑦) ∈ Comp → (𝑥𝑦) ∈ (𝑗t 𝑦))})
54mptrcl 6957 . . . . . . . . . 10 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ Top)
65adantr 481 . . . . . . . . 9 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ Top)
7 toptopon2 22267 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
86, 7sylib 217 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ (TopOn‘ 𝐽))
9 simpl 483 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 ∈ (𝑘Gen‘𝐽))
10 elkgen 22887 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))))
1110biimpa 477 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐴 ∈ (𝑘Gen‘𝐽)) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
128, 9, 11syl2anc 584 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1312simpld 495 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 𝐽)
14 df-ss 3927 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
1513, 14sylib 217 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽) = 𝐴)
1615ineq1d 4171 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐴 𝐽) ∩ 𝐾) = (𝐴𝐾))
173, 16eqtrid 2788 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) = (𝐴𝐾))
18 cmptop 22746 . . . . . . . 8 ((𝐽t 𝐾) ∈ Comp → (𝐽t 𝐾) ∈ Top)
1918adantl 482 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
20 restrcl 22508 . . . . . . . 8 ((𝐽t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V))
2120simprd 496 . . . . . . 7 ((𝐽t 𝐾) ∈ Top → 𝐾 ∈ V)
2219, 21syl 17 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐾 ∈ V)
23 eqid 2736 . . . . . . 7 𝐽 = 𝐽
2423restin 22517 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
256, 22, 24syl2anc 584 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
26 simpr 485 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
2725, 26eqeltrrd 2839 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t (𝐾 𝐽)) ∈ Comp)
28 oveq2 7365 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐽t 𝑦) = (𝐽t (𝐾 𝐽)))
2928eleq1d 2822 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐽t 𝑦) ∈ Comp ↔ (𝐽t (𝐾 𝐽)) ∈ Comp))
30 ineq2 4166 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐴𝑦) = (𝐴 ∩ (𝐾 𝐽)))
3130, 28eleq12d 2832 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐴𝑦) ∈ (𝐽t 𝑦) ↔ (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
3229, 31imbi12d 344 . . . . 5 (𝑦 = (𝐾 𝐽) → (((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)) ↔ ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))))
3312simprd 496 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))
34 inss2 4189 . . . . . 6 (𝐾 𝐽) ⊆ 𝐽
35 inex1g 5276 . . . . . . 7 (𝐾 ∈ V → (𝐾 𝐽) ∈ V)
36 elpwg 4563 . . . . . . 7 ((𝐾 𝐽) ∈ V → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3722, 35, 363syl 18 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3834, 37mpbiri 257 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐾 𝐽) ∈ 𝒫 𝐽)
3932, 33, 38rspcdva 3582 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
4027, 39mpd 15 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))
4117, 40eqeltrrd 2839 . 2 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t (𝐾 𝐽)))
4241, 25eleqtrrd 2841 1 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865  cfv 6496  (class class class)co 7357  t crest 17302  Topctop 22242  TopOnctopon 22259  Compccmp 22737  𝑘Genckgen 22884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-rest 17304  df-top 22243  df-topon 22260  df-cmp 22738  df-kgen 22885
This theorem is referenced by:  kgentopon  22889  kgencmp  22896  kgenidm  22898  llycmpkgen2  22901  1stckgen  22905  kgencn3  22909  txkgen  23003
  Copyright terms: Public domain W3C validator