Step | Hyp | Ref
| Expression |
1 | | inass 4150 |
. . . . 5
⊢ ((𝐴 ∩ 𝐾) ∩ ∪ 𝐽) = (𝐴 ∩ (𝐾 ∩ ∪ 𝐽)) |
2 | | in32 4152 |
. . . . 5
⊢ ((𝐴 ∩ 𝐾) ∩ ∪ 𝐽) = ((𝐴 ∩ ∪ 𝐽) ∩ 𝐾) |
3 | 1, 2 | eqtr3i 2768 |
. . . 4
⊢ (𝐴 ∩ (𝐾 ∩ ∪ 𝐽)) = ((𝐴 ∩ ∪ 𝐽) ∩ 𝐾) |
4 | | df-kgen 22593 |
. . . . . . . . . . 11
⊢
𝑘Gen = (𝑗
∈ Top ↦ {𝑥
∈ 𝒫 ∪ 𝑗 ∣ ∀𝑦 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑦) ∈ Comp → (𝑥 ∩ 𝑦) ∈ (𝑗 ↾t 𝑦))}) |
5 | 4 | mptrcl 6866 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑘Gen‘𝐽)
→ 𝐽 ∈
Top) |
6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → 𝐽
∈ Top) |
7 | | toptopon2 21975 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
8 | 6, 7 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → 𝐽
∈ (TopOn‘∪ 𝐽)) |
9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → 𝐴
∈ (𝑘Gen‘𝐽)) |
10 | | elkgen 22595 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘∪ 𝐽)
→ (𝐴 ∈
(𝑘Gen‘𝐽)
↔ (𝐴 ⊆ ∪ 𝐽
∧ ∀𝑦 ∈
𝒫 ∪ 𝐽((𝐽 ↾t 𝑦) ∈ Comp → (𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦))))) |
11 | 10 | biimpa 476 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐴 ∈
(𝑘Gen‘𝐽))
→ (𝐴 ⊆ ∪ 𝐽
∧ ∀𝑦 ∈
𝒫 ∪ 𝐽((𝐽 ↾t 𝑦) ∈ Comp → (𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦)))) |
12 | 8, 9, 11 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
⊆ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑦) ∈ Comp → (𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦)))) |
13 | 12 | simpld 494 |
. . . . . 6
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → 𝐴
⊆ ∪ 𝐽) |
14 | | df-ss 3900 |
. . . . . 6
⊢ (𝐴 ⊆ ∪ 𝐽
↔ (𝐴 ∩ ∪ 𝐽) =
𝐴) |
15 | 13, 14 | sylib 217 |
. . . . 5
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
∩ ∪ 𝐽) = 𝐴) |
16 | 15 | ineq1d 4142 |
. . . 4
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → ((𝐴
∩ ∪ 𝐽) ∩ 𝐾) = (𝐴 ∩ 𝐾)) |
17 | 3, 16 | eqtrid 2790 |
. . 3
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
∩ (𝐾 ∩ ∪ 𝐽))
= (𝐴 ∩ 𝐾)) |
18 | | cmptop 22454 |
. . . . . . . 8
⊢ ((𝐽 ↾t 𝐾) ∈ Comp → (𝐽 ↾t 𝐾) ∈ Top) |
19 | 18 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐽
↾t 𝐾)
∈ Top) |
20 | | restrcl 22216 |
. . . . . . . 8
⊢ ((𝐽 ↾t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
21 | 20 | simprd 495 |
. . . . . . 7
⊢ ((𝐽 ↾t 𝐾) ∈ Top → 𝐾 ∈ V) |
22 | 19, 21 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → 𝐾
∈ V) |
23 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
24 | 23 | restin 22225 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽 ↾t 𝐾) = (𝐽 ↾t (𝐾 ∩ ∪ 𝐽))) |
25 | 6, 22, 24 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐽
↾t 𝐾) =
(𝐽 ↾t
(𝐾 ∩ ∪ 𝐽))) |
26 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐽
↾t 𝐾)
∈ Comp) |
27 | 25, 26 | eqeltrrd 2840 |
. . . 4
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐽
↾t (𝐾
∩ ∪ 𝐽)) ∈ Comp) |
28 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = (𝐾 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑦) = (𝐽 ↾t (𝐾 ∩ ∪ 𝐽))) |
29 | 28 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = (𝐾 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑦) ∈ Comp ↔ (𝐽 ↾t (𝐾 ∩ ∪ 𝐽)) ∈
Comp)) |
30 | | ineq2 4137 |
. . . . . . 7
⊢ (𝑦 = (𝐾 ∩ ∪ 𝐽) → (𝐴 ∩ 𝑦) = (𝐴 ∩ (𝐾 ∩ ∪ 𝐽))) |
31 | 30, 28 | eleq12d 2833 |
. . . . . 6
⊢ (𝑦 = (𝐾 ∩ ∪ 𝐽) → ((𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦) ↔ (𝐴 ∩ (𝐾 ∩ ∪ 𝐽)) ∈ (𝐽 ↾t (𝐾 ∩ ∪ 𝐽)))) |
32 | 29, 31 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = (𝐾 ∩ ∪ 𝐽) → (((𝐽 ↾t 𝑦) ∈ Comp → (𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦)) ↔ ((𝐽 ↾t (𝐾 ∩ ∪ 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 ∩ ∪ 𝐽)) ∈ (𝐽 ↾t (𝐾 ∩ ∪ 𝐽))))) |
33 | 12 | simprd 495 |
. . . . 5
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → ∀𝑦 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑦) ∈ Comp → (𝐴 ∩ 𝑦) ∈ (𝐽 ↾t 𝑦))) |
34 | | inss2 4160 |
. . . . . 6
⊢ (𝐾 ∩ ∪ 𝐽)
⊆ ∪ 𝐽 |
35 | | inex1g 5238 |
. . . . . . 7
⊢ (𝐾 ∈ V → (𝐾 ∩ ∪ 𝐽)
∈ V) |
36 | | elpwg 4533 |
. . . . . . 7
⊢ ((𝐾 ∩ ∪ 𝐽)
∈ V → ((𝐾 ∩
∪ 𝐽) ∈ 𝒫 ∪ 𝐽
↔ (𝐾 ∩ ∪ 𝐽)
⊆ ∪ 𝐽)) |
37 | 22, 35, 36 | 3syl 18 |
. . . . . 6
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → ((𝐾
∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽
↔ (𝐾 ∩ ∪ 𝐽)
⊆ ∪ 𝐽)) |
38 | 34, 37 | mpbiri 257 |
. . . . 5
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐾
∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
39 | 32, 33, 38 | rspcdva 3554 |
. . . 4
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → ((𝐽
↾t (𝐾
∩ ∪ 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 ∩ ∪ 𝐽)) ∈ (𝐽 ↾t (𝐾 ∩ ∪ 𝐽)))) |
40 | 27, 39 | mpd 15 |
. . 3
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
∩ (𝐾 ∩ ∪ 𝐽))
∈ (𝐽
↾t (𝐾
∩ ∪ 𝐽))) |
41 | 17, 40 | eqeltrrd 2840 |
. 2
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
∩ 𝐾) ∈ (𝐽 ↾t (𝐾 ∩ ∪ 𝐽))) |
42 | 41, 25 | eleqtrrd 2842 |
1
⊢ ((𝐴 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝐾)
∈ Comp) → (𝐴
∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) |