MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgs Structured version   Visualization version   GIF version

Definition df-lgs 27182
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Distinct variable group:   𝑚,𝑎,𝑛

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 27181 . 2 class /L
2 va . . 3 setvar 𝑎
3 vn . . 3 setvar 𝑛
4 cz 12505 . . 3 class
53cv 1539 . . . . 5 class 𝑛
6 cc0 11044 . . . . 5 class 0
75, 6wceq 1540 . . . 4 wff 𝑛 = 0
82cv 1539 . . . . . . 7 class 𝑎
9 c2 12217 . . . . . . 7 class 2
10 cexp 14002 . . . . . . 7 class
118, 9, 10co 7369 . . . . . 6 class (𝑎↑2)
12 c1 11045 . . . . . 6 class 1
1311, 12wceq 1540 . . . . 5 wff (𝑎↑2) = 1
1413, 12, 6cif 4484 . . . 4 class if((𝑎↑2) = 1, 1, 0)
15 clt 11184 . . . . . . . 8 class <
165, 6, 15wbr 5102 . . . . . . 7 wff 𝑛 < 0
178, 6, 15wbr 5102 . . . . . . 7 wff 𝑎 < 0
1816, 17wa 395 . . . . . 6 wff (𝑛 < 0 ∧ 𝑎 < 0)
1912cneg 11382 . . . . . 6 class -1
2018, 19, 12cif 4484 . . . . 5 class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1)
21 cabs 15176 . . . . . . 7 class abs
225, 21cfv 6499 . . . . . 6 class (abs‘𝑛)
23 cmul 11049 . . . . . . 7 class ·
24 vm . . . . . . . 8 setvar 𝑚
25 cn 12162 . . . . . . . 8 class
2624cv 1539 . . . . . . . . . 10 class 𝑚
27 cprime 16617 . . . . . . . . . 10 class
2826, 27wcel 2109 . . . . . . . . 9 wff 𝑚 ∈ ℙ
2926, 9wceq 1540 . . . . . . . . . . 11 wff 𝑚 = 2
30 cdvds 16198 . . . . . . . . . . . . 13 class
319, 8, 30wbr 5102 . . . . . . . . . . . 12 wff 2 ∥ 𝑎
32 c8 12223 . . . . . . . . . . . . . . 15 class 8
33 cmo 13807 . . . . . . . . . . . . . . 15 class mod
348, 32, 33co 7369 . . . . . . . . . . . . . 14 class (𝑎 mod 8)
35 c7 12222 . . . . . . . . . . . . . . 15 class 7
3612, 35cpr 4587 . . . . . . . . . . . . . 14 class {1, 7}
3734, 36wcel 2109 . . . . . . . . . . . . 13 wff (𝑎 mod 8) ∈ {1, 7}
3837, 12, 19cif 4484 . . . . . . . . . . . 12 class if((𝑎 mod 8) ∈ {1, 7}, 1, -1)
3931, 6, 38cif 4484 . . . . . . . . . . 11 class if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1))
40 cmin 11381 . . . . . . . . . . . . . . . . 17 class
4126, 12, 40co 7369 . . . . . . . . . . . . . . . 16 class (𝑚 − 1)
42 cdiv 11811 . . . . . . . . . . . . . . . 16 class /
4341, 9, 42co 7369 . . . . . . . . . . . . . . 15 class ((𝑚 − 1) / 2)
448, 43, 10co 7369 . . . . . . . . . . . . . 14 class (𝑎↑((𝑚 − 1) / 2))
45 caddc 11047 . . . . . . . . . . . . . 14 class +
4644, 12, 45co 7369 . . . . . . . . . . . . 13 class ((𝑎↑((𝑚 − 1) / 2)) + 1)
4746, 26, 33co 7369 . . . . . . . . . . . 12 class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚)
4847, 12, 40co 7369 . . . . . . . . . . 11 class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)
4929, 39, 48cif 4484 . . . . . . . . . 10 class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))
50 cpc 16783 . . . . . . . . . . 11 class pCnt
5126, 5, 50co 7369 . . . . . . . . . 10 class (𝑚 pCnt 𝑛)
5249, 51, 10co 7369 . . . . . . . . 9 class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛))
5328, 52, 12cif 4484 . . . . . . . 8 class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)
5424, 25, 53cmpt 5183 . . . . . . 7 class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))
5523, 54, 12cseq 13942 . . . . . 6 class seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))
5622, 55cfv 6499 . . . . 5 class (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))
5720, 56, 23co 7369 . . . 4 class (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))
587, 14, 57cif 4484 . . 3 class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))
592, 3, 4, 4, 58cmpo 7371 . 2 class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
601, 59wceq 1540 1 wff /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Colors of variables: wff setvar class
This definition is referenced by:  lgsval  27188
  Copyright terms: Public domain W3C validator