MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgs Structured version   Visualization version   GIF version

Definition df-lgs 27357
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Distinct variable group:   𝑚,𝑎,𝑛

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 27356 . 2 class /L
2 va . . 3 setvar 𝑎
3 vn . . 3 setvar 𝑛
4 cz 12639 . . 3 class
53cv 1536 . . . . 5 class 𝑛
6 cc0 11184 . . . . 5 class 0
75, 6wceq 1537 . . . 4 wff 𝑛 = 0
82cv 1536 . . . . . . 7 class 𝑎
9 c2 12348 . . . . . . 7 class 2
10 cexp 14112 . . . . . . 7 class
118, 9, 10co 7448 . . . . . 6 class (𝑎↑2)
12 c1 11185 . . . . . 6 class 1
1311, 12wceq 1537 . . . . 5 wff (𝑎↑2) = 1
1413, 12, 6cif 4548 . . . 4 class if((𝑎↑2) = 1, 1, 0)
15 clt 11324 . . . . . . . 8 class <
165, 6, 15wbr 5166 . . . . . . 7 wff 𝑛 < 0
178, 6, 15wbr 5166 . . . . . . 7 wff 𝑎 < 0
1816, 17wa 395 . . . . . 6 wff (𝑛 < 0 ∧ 𝑎 < 0)
1912cneg 11521 . . . . . 6 class -1
2018, 19, 12cif 4548 . . . . 5 class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1)
21 cabs 15283 . . . . . . 7 class abs
225, 21cfv 6573 . . . . . 6 class (abs‘𝑛)
23 cmul 11189 . . . . . . 7 class ·
24 vm . . . . . . . 8 setvar 𝑚
25 cn 12293 . . . . . . . 8 class
2624cv 1536 . . . . . . . . . 10 class 𝑚
27 cprime 16718 . . . . . . . . . 10 class
2826, 27wcel 2108 . . . . . . . . 9 wff 𝑚 ∈ ℙ
2926, 9wceq 1537 . . . . . . . . . . 11 wff 𝑚 = 2
30 cdvds 16302 . . . . . . . . . . . . 13 class
319, 8, 30wbr 5166 . . . . . . . . . . . 12 wff 2 ∥ 𝑎
32 c8 12354 . . . . . . . . . . . . . . 15 class 8
33 cmo 13920 . . . . . . . . . . . . . . 15 class mod
348, 32, 33co 7448 . . . . . . . . . . . . . 14 class (𝑎 mod 8)
35 c7 12353 . . . . . . . . . . . . . . 15 class 7
3612, 35cpr 4650 . . . . . . . . . . . . . 14 class {1, 7}
3734, 36wcel 2108 . . . . . . . . . . . . 13 wff (𝑎 mod 8) ∈ {1, 7}
3837, 12, 19cif 4548 . . . . . . . . . . . 12 class if((𝑎 mod 8) ∈ {1, 7}, 1, -1)
3931, 6, 38cif 4548 . . . . . . . . . . 11 class if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1))
40 cmin 11520 . . . . . . . . . . . . . . . . 17 class
4126, 12, 40co 7448 . . . . . . . . . . . . . . . 16 class (𝑚 − 1)
42 cdiv 11947 . . . . . . . . . . . . . . . 16 class /
4341, 9, 42co 7448 . . . . . . . . . . . . . . 15 class ((𝑚 − 1) / 2)
448, 43, 10co 7448 . . . . . . . . . . . . . 14 class (𝑎↑((𝑚 − 1) / 2))
45 caddc 11187 . . . . . . . . . . . . . 14 class +
4644, 12, 45co 7448 . . . . . . . . . . . . 13 class ((𝑎↑((𝑚 − 1) / 2)) + 1)
4746, 26, 33co 7448 . . . . . . . . . . . 12 class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚)
4847, 12, 40co 7448 . . . . . . . . . . 11 class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)
4929, 39, 48cif 4548 . . . . . . . . . 10 class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))
50 cpc 16883 . . . . . . . . . . 11 class pCnt
5126, 5, 50co 7448 . . . . . . . . . 10 class (𝑚 pCnt 𝑛)
5249, 51, 10co 7448 . . . . . . . . 9 class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛))
5328, 52, 12cif 4548 . . . . . . . 8 class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)
5424, 25, 53cmpt 5249 . . . . . . 7 class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))
5523, 54, 12cseq 14052 . . . . . 6 class seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))
5622, 55cfv 6573 . . . . 5 class (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))
5720, 56, 23co 7448 . . . 4 class (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))
587, 14, 57cif 4548 . . 3 class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))
592, 3, 4, 4, 58cmpo 7450 . 2 class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
601, 59wceq 1537 1 wff /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Colors of variables: wff setvar class
This definition is referenced by:  lgsval  27363
  Copyright terms: Public domain W3C validator