MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zabsle1 Structured version   Visualization version   GIF version

Theorem zabsle1 27035
Description: {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 4690 . . 3 (𝑍 ∈ {-1, 0, 1} → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2 fveq2 6890 . . . . 5 (𝑍 = -1 → (abs‘𝑍) = (abs‘-1))
3 ax-1cn 11170 . . . . . . . 8 1 ∈ ℂ
43absnegi 15351 . . . . . . 7 (abs‘-1) = (abs‘1)
5 abs1 15248 . . . . . . 7 (abs‘1) = 1
64, 5eqtri 2758 . . . . . 6 (abs‘-1) = 1
7 1le1 11846 . . . . . 6 1 ≤ 1
86, 7eqbrtri 5168 . . . . 5 (abs‘-1) ≤ 1
92, 8eqbrtrdi 5186 . . . 4 (𝑍 = -1 → (abs‘𝑍) ≤ 1)
10 fveq2 6890 . . . . 5 (𝑍 = 0 → (abs‘𝑍) = (abs‘0))
11 abs0 15236 . . . . . 6 (abs‘0) = 0
12 0le1 11741 . . . . . 6 0 ≤ 1
1311, 12eqbrtri 5168 . . . . 5 (abs‘0) ≤ 1
1410, 13eqbrtrdi 5186 . . . 4 (𝑍 = 0 → (abs‘𝑍) ≤ 1)
15 fveq2 6890 . . . . 5 (𝑍 = 1 → (abs‘𝑍) = (abs‘1))
165, 7eqbrtri 5168 . . . . 5 (abs‘1) ≤ 1
1715, 16eqbrtrdi 5186 . . . 4 (𝑍 = 1 → (abs‘𝑍) ≤ 1)
189, 14, 173jaoi 1425 . . 3 ((𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1) → (abs‘𝑍) ≤ 1)
191, 18syl 17 . 2 (𝑍 ∈ {-1, 0, 1} → (abs‘𝑍) ≤ 1)
20 zre 12566 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
21 1red 11219 . . . 4 (𝑍 ∈ ℤ → 1 ∈ ℝ)
2220, 21absled 15381 . . 3 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 ↔ (-1 ≤ 𝑍𝑍 ≤ 1)))
23 elz 12564 . . . 4 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)))
24 3mix2 1329 . . . . . . . . . 10 (𝑍 = 0 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2524a1d 25 . . . . . . . . 9 (𝑍 = 0 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
26 nnle1eq1 12246 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℕ → (𝑍 ≤ 1 ↔ 𝑍 = 1))
2726biimpac 477 . . . . . . . . . . . . . 14 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → 𝑍 = 1)
28273mix3d 1336 . . . . . . . . . . . . 13 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2928ex 411 . . . . . . . . . . . 12 (𝑍 ≤ 1 → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3029adantl 480 . . . . . . . . . . 11 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3130adantl 480 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3231com12 32 . . . . . . . . 9 (𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
33 elnnz1 12592 . . . . . . . . . 10 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍))
34 1red 11219 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℝ → 1 ∈ ℝ)
35 lenegcon2 11723 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (1 ≤ -𝑍𝑍 ≤ -1))
3634, 35mpancom 684 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (1 ≤ -𝑍𝑍 ≤ -1))
37 neg1rr 12331 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → -1 ∈ ℝ)
39 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
4038, 39letri3d 11360 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ ℝ → (-1 = 𝑍 ↔ (-1 ≤ 𝑍𝑍 ≤ -1)))
41 3mix1 1328 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = -1 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4241eqcoms 2738 . . . . . . . . . . . . . . . . . . 19 (-1 = 𝑍 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4340, 42syl6bir 253 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4544ex 411 . . . . . . . . . . . . . . . 16 (-1 ≤ 𝑍 → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4645adantr 479 . . . . . . . . . . . . . . 15 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4746com13 88 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (𝑍 ≤ -1 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4836, 47sylbid 239 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → (1 ≤ -𝑍 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4948com12 32 . . . . . . . . . . . 12 (1 ≤ -𝑍 → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
5049impd 409 . . . . . . . . . . 11 (1 ≤ -𝑍 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5150adantl 480 . . . . . . . . . 10 ((-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5233, 51sylbi 216 . . . . . . . . 9 (-𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5325, 32, 523jaoi 1425 . . . . . . . 8 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5453imp 405 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
55 eltpg 4688 . . . . . . . . 9 (𝑍 ∈ ℝ → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5655adantr 479 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5756adantl 480 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5854, 57mpbird 256 . . . . . 6 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → 𝑍 ∈ {-1, 0, 1})
5958exp32 419 . . . . 5 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1})))
6059impcom 406 . . . 4 ((𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)) → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6123, 60sylbi 216 . . 3 (𝑍 ∈ ℤ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6222, 61sylbid 239 . 2 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 → 𝑍 ∈ {-1, 0, 1}))
6319, 62impbid2 225 1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3o 1084   = wceq 1539  wcel 2104  {ctp 4631   class class class wbr 5147  cfv 6542  cr 11111  0cc0 11112  1c1 11113  cle 11253  -cneg 11449  cn 12216  cz 12562  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187
This theorem is referenced by:  lgscl1  27059
  Copyright terms: Public domain W3C validator