MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zabsle1 Structured version   Visualization version   GIF version

Theorem zabsle1 27358
Description: {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 4711 . . 3 (𝑍 ∈ {-1, 0, 1} → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2 fveq2 6920 . . . . 5 (𝑍 = -1 → (abs‘𝑍) = (abs‘-1))
3 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
43absnegi 15449 . . . . . . 7 (abs‘-1) = (abs‘1)
5 abs1 15346 . . . . . . 7 (abs‘1) = 1
64, 5eqtri 2768 . . . . . 6 (abs‘-1) = 1
7 1le1 11918 . . . . . 6 1 ≤ 1
86, 7eqbrtri 5187 . . . . 5 (abs‘-1) ≤ 1
92, 8eqbrtrdi 5205 . . . 4 (𝑍 = -1 → (abs‘𝑍) ≤ 1)
10 fveq2 6920 . . . . 5 (𝑍 = 0 → (abs‘𝑍) = (abs‘0))
11 abs0 15334 . . . . . 6 (abs‘0) = 0
12 0le1 11813 . . . . . 6 0 ≤ 1
1311, 12eqbrtri 5187 . . . . 5 (abs‘0) ≤ 1
1410, 13eqbrtrdi 5205 . . . 4 (𝑍 = 0 → (abs‘𝑍) ≤ 1)
15 fveq2 6920 . . . . 5 (𝑍 = 1 → (abs‘𝑍) = (abs‘1))
165, 7eqbrtri 5187 . . . . 5 (abs‘1) ≤ 1
1715, 16eqbrtrdi 5205 . . . 4 (𝑍 = 1 → (abs‘𝑍) ≤ 1)
189, 14, 173jaoi 1428 . . 3 ((𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1) → (abs‘𝑍) ≤ 1)
191, 18syl 17 . 2 (𝑍 ∈ {-1, 0, 1} → (abs‘𝑍) ≤ 1)
20 zre 12643 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
21 1red 11291 . . . 4 (𝑍 ∈ ℤ → 1 ∈ ℝ)
2220, 21absled 15479 . . 3 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 ↔ (-1 ≤ 𝑍𝑍 ≤ 1)))
23 elz 12641 . . . 4 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)))
24 3mix2 1331 . . . . . . . . . 10 (𝑍 = 0 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2524a1d 25 . . . . . . . . 9 (𝑍 = 0 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
26 nnle1eq1 12323 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℕ → (𝑍 ≤ 1 ↔ 𝑍 = 1))
2726biimpac 478 . . . . . . . . . . . . . 14 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → 𝑍 = 1)
28273mix3d 1338 . . . . . . . . . . . . 13 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2928ex 412 . . . . . . . . . . . 12 (𝑍 ≤ 1 → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3029adantl 481 . . . . . . . . . . 11 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3130adantl 481 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3231com12 32 . . . . . . . . 9 (𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
33 elnnz1 12669 . . . . . . . . . 10 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍))
34 1red 11291 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℝ → 1 ∈ ℝ)
35 lenegcon2 11795 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (1 ≤ -𝑍𝑍 ≤ -1))
3634, 35mpancom 687 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (1 ≤ -𝑍𝑍 ≤ -1))
37 neg1rr 12408 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → -1 ∈ ℝ)
39 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
4038, 39letri3d 11432 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ ℝ → (-1 = 𝑍 ↔ (-1 ≤ 𝑍𝑍 ≤ -1)))
41 3mix1 1330 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = -1 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4241eqcoms 2748 . . . . . . . . . . . . . . . . . . 19 (-1 = 𝑍 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4340, 42biimtrrdi 254 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4544ex 412 . . . . . . . . . . . . . . . 16 (-1 ≤ 𝑍 → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4645adantr 480 . . . . . . . . . . . . . . 15 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4746com13 88 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (𝑍 ≤ -1 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4836, 47sylbid 240 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → (1 ≤ -𝑍 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4948com12 32 . . . . . . . . . . . 12 (1 ≤ -𝑍 → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
5049impd 410 . . . . . . . . . . 11 (1 ≤ -𝑍 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5150adantl 481 . . . . . . . . . 10 ((-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5233, 51sylbi 217 . . . . . . . . 9 (-𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5325, 32, 523jaoi 1428 . . . . . . . 8 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5453imp 406 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
55 eltpg 4709 . . . . . . . . 9 (𝑍 ∈ ℝ → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5655adantr 480 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5756adantl 481 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5854, 57mpbird 257 . . . . . 6 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → 𝑍 ∈ {-1, 0, 1})
5958exp32 420 . . . . 5 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1})))
6059impcom 407 . . . 4 ((𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)) → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6123, 60sylbi 217 . . 3 (𝑍 ∈ ℤ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6222, 61sylbid 240 . 2 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 → 𝑍 ∈ {-1, 0, 1}))
6319, 62impbid2 226 1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  {ctp 4652   class class class wbr 5166  cfv 6573  cr 11183  0cc0 11184  1c1 11185  cle 11325  -cneg 11521  cn 12293  cz 12639  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  lgscl1  27382
  Copyright terms: Public domain W3C validator