MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zabsle1 Structured version   Visualization version   GIF version

Theorem zabsle1 26550
Description: {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 4635 . . 3 (𝑍 ∈ {-1, 0, 1} → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2 fveq2 6825 . . . . 5 (𝑍 = -1 → (abs‘𝑍) = (abs‘-1))
3 ax-1cn 11030 . . . . . . . 8 1 ∈ ℂ
43absnegi 15211 . . . . . . 7 (abs‘-1) = (abs‘1)
5 abs1 15108 . . . . . . 7 (abs‘1) = 1
64, 5eqtri 2764 . . . . . 6 (abs‘-1) = 1
7 1le1 11704 . . . . . 6 1 ≤ 1
86, 7eqbrtri 5113 . . . . 5 (abs‘-1) ≤ 1
92, 8eqbrtrdi 5131 . . . 4 (𝑍 = -1 → (abs‘𝑍) ≤ 1)
10 fveq2 6825 . . . . 5 (𝑍 = 0 → (abs‘𝑍) = (abs‘0))
11 abs0 15096 . . . . . 6 (abs‘0) = 0
12 0le1 11599 . . . . . 6 0 ≤ 1
1311, 12eqbrtri 5113 . . . . 5 (abs‘0) ≤ 1
1410, 13eqbrtrdi 5131 . . . 4 (𝑍 = 0 → (abs‘𝑍) ≤ 1)
15 fveq2 6825 . . . . 5 (𝑍 = 1 → (abs‘𝑍) = (abs‘1))
165, 7eqbrtri 5113 . . . . 5 (abs‘1) ≤ 1
1715, 16eqbrtrdi 5131 . . . 4 (𝑍 = 1 → (abs‘𝑍) ≤ 1)
189, 14, 173jaoi 1426 . . 3 ((𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1) → (abs‘𝑍) ≤ 1)
191, 18syl 17 . 2 (𝑍 ∈ {-1, 0, 1} → (abs‘𝑍) ≤ 1)
20 zre 12424 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
21 1red 11077 . . . 4 (𝑍 ∈ ℤ → 1 ∈ ℝ)
2220, 21absled 15241 . . 3 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 ↔ (-1 ≤ 𝑍𝑍 ≤ 1)))
23 elz 12422 . . . 4 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)))
24 3mix2 1330 . . . . . . . . . 10 (𝑍 = 0 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2524a1d 25 . . . . . . . . 9 (𝑍 = 0 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
26 nnle1eq1 12104 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℕ → (𝑍 ≤ 1 ↔ 𝑍 = 1))
2726biimpac 479 . . . . . . . . . . . . . 14 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → 𝑍 = 1)
28273mix3d 1337 . . . . . . . . . . . . 13 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2928ex 413 . . . . . . . . . . . 12 (𝑍 ≤ 1 → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3029adantl 482 . . . . . . . . . . 11 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3130adantl 482 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3231com12 32 . . . . . . . . 9 (𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
33 elnnz1 12447 . . . . . . . . . 10 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍))
34 1red 11077 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℝ → 1 ∈ ℝ)
35 lenegcon2 11581 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (1 ≤ -𝑍𝑍 ≤ -1))
3634, 35mpancom 685 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (1 ≤ -𝑍𝑍 ≤ -1))
37 neg1rr 12189 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → -1 ∈ ℝ)
39 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
4038, 39letri3d 11218 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ ℝ → (-1 = 𝑍 ↔ (-1 ≤ 𝑍𝑍 ≤ -1)))
41 3mix1 1329 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = -1 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4241eqcoms 2744 . . . . . . . . . . . . . . . . . . 19 (-1 = 𝑍 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4340, 42syl6bir 253 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4544ex 413 . . . . . . . . . . . . . . . 16 (-1 ≤ 𝑍 → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4645adantr 481 . . . . . . . . . . . . . . 15 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4746com13 88 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (𝑍 ≤ -1 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4836, 47sylbid 239 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → (1 ≤ -𝑍 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4948com12 32 . . . . . . . . . . . 12 (1 ≤ -𝑍 → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
5049impd 411 . . . . . . . . . . 11 (1 ≤ -𝑍 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5150adantl 482 . . . . . . . . . 10 ((-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5233, 51sylbi 216 . . . . . . . . 9 (-𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5325, 32, 523jaoi 1426 . . . . . . . 8 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5453imp 407 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
55 eltpg 4633 . . . . . . . . 9 (𝑍 ∈ ℝ → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5655adantr 481 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5756adantl 482 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5854, 57mpbird 256 . . . . . 6 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → 𝑍 ∈ {-1, 0, 1})
5958exp32 421 . . . . 5 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1})))
6059impcom 408 . . . 4 ((𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)) → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6123, 60sylbi 216 . . 3 (𝑍 ∈ ℤ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6222, 61sylbid 239 . 2 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 → 𝑍 ∈ {-1, 0, 1}))
6319, 62impbid2 225 1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085   = wceq 1540  wcel 2105  {ctp 4577   class class class wbr 5092  cfv 6479  cr 10971  0cc0 10972  1c1 10973  cle 11111  -cneg 11307  cn 12074  cz 12420  abscabs 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046
This theorem is referenced by:  lgscl1  26574
  Copyright terms: Public domain W3C validator