HomeHome Metamath Proof Explorer
Theorem List (p. 272 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 27101-27200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcleag 27101 Extend class relation with the "angle less than" relation.
class
 
Definitiondf-inag 27102* Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020.)
inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
 
Theoremisinag 27103* Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)       (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
 
Theoremisinagd 27104 Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)    &   (𝜑𝑌𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌 ∈ (𝐴𝐼𝐶))    &   (𝜑 → (𝑌 = 𝐵𝑌(𝐾𝐵)𝑋))       (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoreminagflat 27105 Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝑋𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))       (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoreminagswap 27106 Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)       (𝜑𝑋(inA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
 
Theoreminagne1 27107 Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)       (𝜑𝐴𝐵)
 
Theoreminagne2 27108 Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)       (𝜑𝐶𝐵)
 
Theoreminagne3 27109 Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)       (𝜑𝑋𝐵)
 
Theoreminaghl 27110 The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)    &   (𝜑𝐷𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝐷(𝐾𝐵)𝐴)    &   (𝜑𝐹(𝐾𝐵)𝐶)    &   (𝜑𝑌(𝐾𝐵)𝑋)       (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
 
Definitiondf-leag 27111* Definition of the geometrical "angle less than" relation. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
= (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
 
Theoremisleag 27112* Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
 
Theoremisleagd 27113 Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &    = (≤𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
 
Theoremleagne1 27114 Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐴𝐵)
 
Theoremleagne2 27115 Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐶𝐵)
 
Theoremleagne3 27116 Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐷𝐸)
 
Theoremleagne4 27117 Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐹𝐸)
 
Theoremcgrg3col4 27118* Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
𝑃 = (Base‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))       (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
 
15.2.18  Congruence Theorems
 
Theoremtgsas1 27119 First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then third sides are equal in length. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))       (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
 
Theoremtgsas 27120 First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremtgsas2 27121 First congruence theorem: SAS. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐴𝐶)       (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
 
Theoremtgsas3 27122 First congruence theorem: SAS. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐴𝐶)       (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)
 
Theoremtgasa1 27123 Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)       (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
 
Theoremtgasa 27124 Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremtgsss1 27125 Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑𝐶𝐴)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremtgsss2 27126 Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑𝐶𝐴)       (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
 
Theoremtgsss3 27127 Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑𝐶𝐴)       (𝜑 → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)
 
Theoremdfcgrg2 27128 Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 26776, already covers that part: see trgcgr 26781. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 26781. (Contributed by Thierry Arnoux, 18-Jan-2023.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑𝐶𝐴)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
 
Theoremisoas 27129 Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐶𝐵”⟩)       (𝜑 → (𝐴 𝐵) = (𝐴 𝐶))
 
15.2.19  Equilateral triangles
 
Syntaxceqlg 27130 Declare the class of equilateral triangles.
class eqltrG
 
Definitiondf-eqlg 27131* Define the class of equilateral triangles. (Contributed by Thierry Arnoux, 27-Nov-2019.)
eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
 
Theoremiseqlg 27132 Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
 
Theoremiseqlgd 27133 Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))    &   (𝜑 → (𝐵 𝐶) = (𝐶 𝐴))    &   (𝜑 → (𝐶 𝐴) = (𝐴 𝐵))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺))
 
15.3  Properties of geometries
 
15.3.1  Isomorphisms between geometries
 
Theoremf1otrgds 27134* Convenient lemma for f1otrg 27136. (Contributed by Thierry Arnoux, 19-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐷 = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐵 = (Base‘𝐻)    &   𝐸 = (dist‘𝐻)    &   𝐽 = (Itv‘𝐻)    &   (𝜑𝐹:𝐵1-1-onto𝑃)    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐸𝑌) = ((𝐹𝑋)𝐷(𝐹𝑌)))
 
Theoremf1otrgitv 27135* Convenient lemma for f1otrg 27136. (Contributed by Thierry Arnoux, 19-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐷 = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐵 = (Base‘𝐻)    &   𝐸 = (dist‘𝐻)    &   𝐽 = (Itv‘𝐻)    &   (𝜑𝐹:𝐵1-1-onto𝑃)    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹𝑍) ∈ ((𝐹𝑋)𝐼(𝐹𝑌))))
 
Theoremf1otrg 27136* A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐷 = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐵 = (Base‘𝐻)    &   𝐸 = (dist‘𝐻)    &   𝐽 = (Itv‘𝐻)    &   (𝜑𝐹:𝐵1-1-onto𝑃)    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))    &   (𝜑𝐻𝑉)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑 → (LineG‘𝐻) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))}))       (𝜑𝐻 ∈ TarskiG)
 
Theoremf1otrge 27137* A bijection between bases which conserves distances and intervals conserves also the property of being a Euclidean geometry. (Contributed by Thierry Arnoux, 23-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐷 = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐵 = (Base‘𝐻)    &   𝐸 = (dist‘𝐻)    &   𝐽 = (Itv‘𝐻)    &   (𝜑𝐹:𝐵1-1-onto𝑃)    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵)) → (𝑒𝐸𝑓) = ((𝐹𝑒)𝐷(𝐹𝑓)))    &   ((𝜑 ∧ (𝑒𝐵𝑓𝐵𝑔𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹𝑔) ∈ ((𝐹𝑒)𝐼(𝐹𝑓))))    &   (𝜑𝐻𝑉)    &   (𝜑𝐺 ∈ TarskiGE)       (𝜑𝐻 ∈ TarskiGE)
 
15.4  Geometry in Hilbert spaces
 
Syntaxcttg 27138 Function to convert an algebraic structure to a Tarski geometry.
class toTG
 
Definitiondf-ttg 27139* Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval (0[,]1), only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019.)
toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
 
Theoremttgval 27140* Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.)
𝐺 = (toTG‘𝐻)    &   𝐵 = (Base‘𝐻)    &    = (-g𝐻)    &    · = ( ·𝑠𝐻)    &   𝐼 = (Itv‘𝐺)       (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
 
Theoremttglem 27141 Lemma for ttgbas 27143, ttgvsca 27148 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.)
𝐺 = (toTG‘𝐻)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (LineG‘ndx)    &   (𝐸‘ndx) ≠ (Itv‘ndx)       (𝐸𝐻) = (𝐸𝐺)
 
TheoremttglemOLD 27142 Obsolete version of ttglem 27141 as of 29-Oct-2024. Lemma for ttgbas 27143 and ttgvsca 27148. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (toTG‘𝐻)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 < 16       (𝐸𝐻) = (𝐸𝐺)
 
Theoremttgbas 27143 The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.)
𝐺 = (toTG‘𝐻)    &   𝐵 = (Base‘𝐻)       𝐵 = (Base‘𝐺)
 
TheoremttgbasOLD 27144 Obsolete proof of ttgbas 27143 as of 29-Oct-2024. The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (toTG‘𝐻)    &   𝐵 = (Base‘𝐻)       𝐵 = (Base‘𝐺)
 
Theoremttgplusg 27145 The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.)
𝐺 = (toTG‘𝐻)    &    + = (+g𝐻)        + = (+g𝐺)
 
TheoremttgplusgOLD 27146 Obsolete proof of ttgplusg 27145 as of 29-Oct-2024. The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (toTG‘𝐻)    &    + = (+g𝐻)        + = (+g𝐺)
 
Theoremttgsub 27147 The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
𝐺 = (toTG‘𝐻)    &    = (-g𝐻)        = (-g𝐺)
 
Theoremttgvsca 27148 The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.)
𝐺 = (toTG‘𝐻)    &    · = ( ·𝑠𝐻)        · = ( ·𝑠𝐺)
 
TheoremttgvscaOLD 27149 Obsolete proof of ttgvsca 27148 as of 29-Oct-2024. The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (toTG‘𝐻)    &    · = ( ·𝑠𝐻)        · = ( ·𝑠𝐺)
 
Theoremttgds 27150 The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.)
𝐺 = (toTG‘𝐻)    &   𝐷 = (dist‘𝐻)       𝐷 = (dist‘𝐺)
 
TheoremttgdsOLD 27151 Obsolete proof of ttgds 27150 as of 29-Oct-2024. The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = (toTG‘𝐻)    &   𝐷 = (dist‘𝐻)       𝐷 = (dist‘𝐺)
 
Theoremttgitvval 27152* Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
𝐺 = (toTG‘𝐻)    &   𝐼 = (Itv‘𝐺)    &   𝑃 = (Base‘𝐻)    &    = (-g𝐻)    &    · = ( ·𝑠𝐻)       ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
 
Theoremttgelitv 27153* Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
𝐺 = (toTG‘𝐻)    &   𝐼 = (Itv‘𝐺)    &   𝑃 = (Base‘𝐻)    &    = (-g𝐻)    &    · = ( ·𝑠𝐻)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝐻𝑉)    &   (𝜑𝑍𝑃)       (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
 
Theoremttgbtwnid 27154 Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
𝐺 = (toTG‘𝐻)    &   𝐼 = (Itv‘𝐺)    &   𝑃 = (Base‘𝐻)    &    = (-g𝐻)    &    · = ( ·𝑠𝐻)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   𝑅 = (Base‘(Scalar‘𝐻))    &   (𝜑 → (0[,]1) ⊆ 𝑅)    &   (𝜑𝐻 ∈ ℂMod)    &   (𝜑𝑌 ∈ (𝑋𝐼𝑋))       (𝜑𝑋 = 𝑌)
 
Theoremttgcontlem1 27155 Lemma for % ttgcont . (Contributed by Thierry Arnoux, 24-May-2019.)
𝐺 = (toTG‘𝐻)    &   𝐼 = (Itv‘𝐺)    &   𝑃 = (Base‘𝐻)    &    = (-g𝐻)    &    · = ( ·𝑠𝐻)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   𝑅 = (Base‘(Scalar‘𝐻))    &   (𝜑 → (0[,]1) ⊆ 𝑅)    &    + = (+g𝐻)    &   (𝜑𝐻 ∈ ℂVec)    &   (𝜑𝐴𝑃)    &   (𝜑𝑁𝑃)    &   (𝜑𝑀 ≠ 0)    &   (𝜑𝐾 ≠ 0)    &   (𝜑𝐾 ≠ 1)    &   (𝜑𝐿𝑀)    &   (𝜑𝐿 ≤ (𝑀 / 𝐾))    &   (𝜑𝐿 ∈ (0[,]1))    &   (𝜑𝐾 ∈ (0[,]1))    &   (𝜑𝑀 ∈ (0[,]𝐿))    &   (𝜑 → (𝑋 𝐴) = (𝐾 · (𝑌 𝐴)))    &   (𝜑 → (𝑋 𝐴) = (𝑀 · (𝑁 𝐴)))    &   (𝜑𝐵 = (𝐴 + (𝐿 · (𝑁 𝐴))))       (𝜑𝐵 ∈ (𝑋𝐼𝑌))
 
Theoremxmstrkgc 27156 Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.)
(𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)
 
15.4.1  Geometry in the complex plane
 
Theoremcchhllem 27157* Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.)
𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩)    &   𝐸 = Slot (𝐸‘ndx)    &   (Scalar‘ndx) ≠ (𝐸‘ndx)    &   ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)    &   (·𝑖‘ndx) ≠ (𝐸‘ndx)       (𝐸‘ℂfld) = (𝐸𝐶)
 
TheoremcchhllemOLD 27158* Obsolete version of cchhllem 27157 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet ⟨(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))⟩)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   (𝑁 < 5 ∨ 8 < 𝑁)       (𝐸‘ℂfld) = (𝐸𝐶)
 
15.4.2  Geometry in Euclidean spaces
 
15.4.2.1  Definition of the Euclidean space
 
Syntaxcee 27159 Declare the syntax for the Euclidean space generator.
class 𝔼
 
Syntaxcbtwn 27160 Declare the syntax for the Euclidean betweenness predicate.
class Btwn
 
Syntaxccgr 27161 Declare the syntax for the Euclidean congruence predicate.
class Cgr
 
Definitiondf-ee 27162 Define the Euclidean space generator. For details, see elee 27165. (Contributed by Scott Fenton, 3-Jun-2013.)
𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
 
Definitiondf-btwn 27163* Define the Euclidean betweenness predicate. For details, see brbtwn 27170. (Contributed by Scott Fenton, 3-Jun-2013.)
Btwn = {⟨⟨𝑥, 𝑧⟩, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑧𝑖))))}
 
Definitiondf-cgr 27164* Define the Euclidean congruence predicate. For details, see brcgr 27171. (Contributed by Scott Fenton, 3-Jun-2013.)
Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
 
Theoremelee 27165 Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
(𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
 
Theoremmptelee 27166* A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
(𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
 
Theoremeleenn 27167 If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.)
(𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
 
Theoremeleei 27168 The forward direction of elee 27165. (Contributed by Scott Fenton, 1-Jul-2013.)
(𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)
 
Theoremeedimeq 27169 A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑀)) → 𝑁 = 𝑀)
 
Theorembrbtwn 27170* The binary relation form of the betweenness predicate. The statement 𝐴 Btwn ⟨𝐵, 𝐶 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
 
Theorembrcgr 27171* The binary relation form of the congruence predicate. The statement 𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
(((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
 
Theoremfveere 27172 The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℝ)
 
Theoremfveecn 27173 The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℂ)
 
Theoremeqeefv 27174* Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
 
Theoremeqeelen 27175* Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 0))
 
Theorembrbtwn2 27176* Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
 
Theoremcolinearalglem1 27177 Lemma for colinearalg 27181. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
 
Theoremcolinearalglem2 27178* Lemma for colinearalg 27181. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
 
Theoremcolinearalglem3 27179* Lemma for colinearalg 27181. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖)))))
 
Theoremcolinearalglem4 27180* Lemma for colinearalg 27181. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.)
(((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
 
Theoremcolinearalg 27181* An algebraic characterization of colinearity. Note the similarity to brbtwn2 27176. (Contributed by Scott Fenton, 24-Jun-2013.)
((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
 
Theoremeleesub 27182* Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.)
𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖)))       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
 
Theoremeleesubd 27183* Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 27182. (Contributed by Scott Fenton, 17-Jul-2013.)
(𝜑𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴𝑖) − (𝐵𝑖))))       ((𝜑𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
 
15.4.2.2  Tarski's axioms for geometry for the Euclidean space
 
Theoremaxdimuniq 27184 The unique dimension axiom. If a point is in 𝑁 dimensional space and in 𝑀 dimensional space, then 𝑁 = 𝑀. This axiom is not traditionally presented with Tarski's axioms, but we require it here as we are considering spaces in arbitrary dimensions. (Contributed by Scott Fenton, 24-Sep-2013.)
(((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑀 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑀))) → 𝑁 = 𝑀)
 
Theoremaxcgrrflx 27185 𝐴 is as far from 𝐵 as 𝐵 is from 𝐴. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩)
 
Theoremaxcgrtr 27186 Congruence is transitive. Axiom A2 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩) → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝐹⟩))
 
Theoremaxcgrid 27187 If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐶⟩ → 𝐴 = 𝐵))
 
Theoremaxsegconlem1 27188* Lemma for axsegcon 27198. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
 
Theoremaxsegconlem2 27189* Lemma for axsegcon 27198. Show that the square of the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ)
 
Theoremaxsegconlem3 27190* Lemma for axsegcon 27198. Show that the square of the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆)
 
Theoremaxsegconlem4 27191* Lemma for axsegcon 27198. Show that the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
 
Theoremaxsegconlem5 27192* Lemma for axsegcon 27198. Show that the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑆))
 
Theoremaxsegconlem6 27193* Lemma for axsegcon 27198. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)       ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
 
Theoremaxsegconlem7 27194* Lemma for axsegcon 27198. Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)    &   𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)       (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) ∈ (0[,]1))
 
Theoremaxsegconlem8 27195* Lemma for axsegcon 27198. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)    &   𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)    &   𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))       (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
 
Theoremaxsegconlem9 27196* Lemma for axsegcon 27198. Show that 𝐵𝐹 is congruent to 𝐶𝐷. (Contributed by Scott Fenton, 19-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)    &   𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)    &   𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))       (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
 
Theoremaxsegconlem10 27197* Lemma for axsegcon 27198. Show that the scaling constant from axsegconlem7 27194 produces the betweenness condition for 𝐴, 𝐵 and 𝐹. (Contributed by Scott Fenton, 21-Sep-2013.)
𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)    &   𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)    &   𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))       (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖))))
 
Theoremaxsegcon 27198* Any segment 𝐴𝐵 can be extended to a point 𝑥 such that 𝐵𝑥 is congruent to 𝐶𝐷. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
 
Theoremax5seglem1 27199* Lemma for ax5seg 27209. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
 
Theoremax5seglem2 27200* Lemma for ax5seg 27209. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐶𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >