Detailed syntax breakdown of Definition df-linds
Step | Hyp | Ref
| Expression |
1 | | clinds 20922 |
. 2
class
LIndS |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | cid 5479 |
. . . . . 6
class
I |
5 | | vs |
. . . . . . 7
setvar 𝑠 |
6 | 5 | cv 1538 |
. . . . . 6
class 𝑠 |
7 | 4, 6 | cres 5582 |
. . . . 5
class ( I
↾ 𝑠) |
8 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
9 | | clindf 20921 |
. . . . 5
class
LIndF |
10 | 7, 8, 9 | wbr 5070 |
. . . 4
wff ( I ↾
𝑠) LIndF 𝑤 |
11 | | cbs 16840 |
. . . . . 6
class
Base |
12 | 8, 11 | cfv 6418 |
. . . . 5
class
(Base‘𝑤) |
13 | 12 | cpw 4530 |
. . . 4
class 𝒫
(Base‘𝑤) |
14 | 10, 5, 13 | crab 3067 |
. . 3
class {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤} |
15 | 2, 3, 14 | cmpt 5153 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤}) |
16 | 1, 15 | wceq 1539 |
1
wff LIndS =
(𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤}) |