Detailed syntax breakdown of Definition df-linds
| Step | Hyp | Ref
| Expression |
| 1 | | clinds 21825 |
. 2
class
LIndS |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | cid 5577 |
. . . . . 6
class
I |
| 5 | | vs |
. . . . . . 7
setvar 𝑠 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑠 |
| 7 | 4, 6 | cres 5687 |
. . . . 5
class ( I
↾ 𝑠) |
| 8 | 2 | cv 1539 |
. . . . 5
class 𝑤 |
| 9 | | clindf 21824 |
. . . . 5
class
LIndF |
| 10 | 7, 8, 9 | wbr 5143 |
. . . 4
wff ( I ↾
𝑠) LIndF 𝑤 |
| 11 | | cbs 17247 |
. . . . . 6
class
Base |
| 12 | 8, 11 | cfv 6561 |
. . . . 5
class
(Base‘𝑤) |
| 13 | 12 | cpw 4600 |
. . . 4
class 𝒫
(Base‘𝑤) |
| 14 | 10, 5, 13 | crab 3436 |
. . 3
class {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤} |
| 15 | 2, 3, 14 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤}) |
| 16 | 1, 15 | wceq 1540 |
1
wff LIndS =
(𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣ ( I
↾ 𝑠) LIndF 𝑤}) |