Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islinds3 | Structured version Visualization version GIF version |
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
Ref | Expression |
---|---|
islinds3.b | ⊢ 𝐵 = (Base‘𝑊) |
islinds3.k | ⊢ 𝐾 = (LSpan‘𝑊) |
islinds3.x | ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) |
islinds3.j | ⊢ 𝐽 = (LBasis‘𝑋) |
Ref | Expression |
---|---|
islinds3 | ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islinds3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | 1 | linds1 20772 | . . . 4 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵)) |
4 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
5 | 4 | linds1 20772 | . . . . . 6 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋)) |
6 | islinds3.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) | |
7 | 6, 1 | ressbasss 16792 | . . . . . 6 ⊢ (Base‘𝑋) ⊆ 𝐵 |
8 | 5, 7 | sstrdi 3913 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ 𝐵) |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵)) |
11 | simpl 486 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑊 ∈ LMod) | |
12 | eqid 2737 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | islinds3.k | . . . . . . . . 9 ⊢ 𝐾 = (LSpan‘𝑊) | |
14 | 1, 12, 13 | lspcl 20013 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ∈ (LSubSp‘𝑊)) |
15 | 1, 13 | lspssid 20022 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑌 ⊆ (𝐾‘𝑌)) |
16 | eqid 2737 | . . . . . . . . 9 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
17 | 6, 13, 16, 12 | lsslsp 20052 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
18 | 11, 14, 15, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
19 | 1, 13 | lspssv 20020 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ⊆ 𝐵) |
20 | 6, 1 | ressbas2 16791 | . . . . . . . 8 ⊢ ((𝐾‘𝑌) ⊆ 𝐵 → (𝐾‘𝑌) = (Base‘𝑋)) |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = (Base‘𝑋)) |
22 | 18, 21 | eqtr3d 2779 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) |
23 | 22 | biantrud 535 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
24 | 12, 6 | lsslinds 20793 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
25 | 11, 14, 15, 24 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
26 | 25 | bicomd 226 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋))) |
27 | 26 | anbi1d 633 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
28 | 23, 27 | bitrd 282 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
29 | 28 | ex 416 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ⊆ 𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))) |
30 | 3, 10, 29 | pm5.21ndd 384 | . 2 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
31 | islinds3.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑋) | |
32 | 4, 31, 16 | islbs4 20794 | . 2 ⊢ (𝑌 ∈ 𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))) |
33 | 30, 32 | bitr4di 292 | 1 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 ↾s cress 16784 LModclmod 19899 LSubSpclss 19968 LSpanclspn 20008 LBasisclbs 20111 LIndSclinds 20767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-sca 16818 df-vsca 16819 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lbs 20112 df-lindf 20768 df-linds 20769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |