Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islinds3 | Structured version Visualization version GIF version |
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
Ref | Expression |
---|---|
islinds3.b | ⊢ 𝐵 = (Base‘𝑊) |
islinds3.k | ⊢ 𝐾 = (LSpan‘𝑊) |
islinds3.x | ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) |
islinds3.j | ⊢ 𝐽 = (LBasis‘𝑋) |
Ref | Expression |
---|---|
islinds3 | ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islinds3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | 1 | linds1 20927 | . . . 4 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ 𝐵)) |
4 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
5 | 4 | linds1 20927 | . . . . . 6 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋)) |
6 | islinds3.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) | |
7 | 6, 1 | ressbasss 16876 | . . . . . 6 ⊢ (Base‘𝑋) ⊆ 𝐵 |
8 | 5, 7 | sstrdi 3929 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌 ⊆ 𝐵)) |
11 | simpl 482 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑊 ∈ LMod) | |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
13 | islinds3.k | . . . . . . . . 9 ⊢ 𝐾 = (LSpan‘𝑊) | |
14 | 1, 12, 13 | lspcl 20153 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ∈ (LSubSp‘𝑊)) |
15 | 1, 13 | lspssid 20162 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → 𝑌 ⊆ (𝐾‘𝑌)) |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
17 | 6, 13, 16, 12 | lsslsp 20192 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
18 | 11, 14, 15, 17 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = ((LSpan‘𝑋)‘𝑌)) |
19 | 1, 13 | lspssv 20160 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) ⊆ 𝐵) |
20 | 6, 1 | ressbas2 16875 | . . . . . . . 8 ⊢ ((𝐾‘𝑌) ⊆ 𝐵 → (𝐾‘𝑌) = (Base‘𝑋)) |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝐾‘𝑌) = (Base‘𝑋)) |
22 | 18, 21 | eqtr3d 2780 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) |
23 | 22 | biantrud 531 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
24 | 12, 6 | lsslinds 20948 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾‘𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
25 | 11, 14, 15, 24 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊))) |
26 | 25 | bicomd 222 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋))) |
27 | 26 | anbi1d 629 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
28 | 23, 27 | bitrd 278 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ⊆ 𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
29 | 28 | ex 412 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑌 ⊆ 𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))) |
30 | 3, 10, 29 | pm5.21ndd 380 | . 2 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))) |
31 | islinds3.j | . . 3 ⊢ 𝐽 = (LBasis‘𝑋) | |
32 | 4, 31, 16 | islbs4 20949 | . 2 ⊢ (𝑌 ∈ 𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))) |
33 | 30, 32 | bitr4di 288 | 1 ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LBasisclbs 20251 LIndSclinds 20922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lbs 20252 df-lindf 20923 df-linds 20924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |