MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds3 Structured version   Visualization version   GIF version

Theorem islinds3 21193
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
Hypotheses
Ref Expression
islinds3.b 𝐵 = (Base‘𝑊)
islinds3.k 𝐾 = (LSpan‘𝑊)
islinds3.x 𝑋 = (𝑊s (𝐾𝑌))
islinds3.j 𝐽 = (LBasis‘𝑋)
Assertion
Ref Expression
islinds3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))

Proof of Theorem islinds3
StepHypRef Expression
1 islinds3.b . . . . 5 𝐵 = (Base‘𝑊)
21linds1 21169 . . . 4 (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵)
32a1i 11 . . 3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵))
4 eqid 2737 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
54linds1 21169 . . . . . 6 (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋))
6 islinds3.x . . . . . . 7 𝑋 = (𝑊s (𝐾𝑌))
76, 1ressbasss 17081 . . . . . 6 (Base‘𝑋) ⊆ 𝐵
85, 7sstrdi 3954 . . . . 5 (𝑌 ∈ (LIndS‘𝑋) → 𝑌𝐵)
98adantr 481 . . . 4 ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵)
109a1i 11 . . 3 (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵))
11 simpl 483 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑊 ∈ LMod)
12 eqid 2737 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 islinds3.k . . . . . . . . 9 𝐾 = (LSpan‘𝑊)
141, 12, 13lspcl 20390 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ∈ (LSubSp‘𝑊))
151, 13lspssid 20399 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑌 ⊆ (𝐾𝑌))
16 eqid 2737 . . . . . . . . 9 (LSpan‘𝑋) = (LSpan‘𝑋)
176, 13, 16, 12lsslsp 20429 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
1811, 14, 15, 17syl3anc 1371 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
191, 13lspssv 20397 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ⊆ 𝐵)
206, 1ressbas2 17080 . . . . . . . 8 ((𝐾𝑌) ⊆ 𝐵 → (𝐾𝑌) = (Base‘𝑋))
2119, 20syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = (Base‘𝑋))
2218, 21eqtr3d 2779 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))
2322biantrud 532 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2412, 6lsslinds 21190 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2511, 14, 15, 24syl3anc 1371 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2625bicomd 222 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋)))
2726anbi1d 630 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2823, 27bitrd 278 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2928ex 413 . . 3 (𝑊 ∈ LMod → (𝑌𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))))
303, 10, 29pm5.21ndd 380 . 2 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
31 islinds3.j . . 3 𝐽 = (LBasis‘𝑋)
324, 31, 16islbs4 21191 . 2 (𝑌𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))
3330, 32bitr4di 288 1 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3908  cfv 6493  (class class class)co 7351  Basecbs 17043  s cress 17072  LModclmod 20275  LSubSpclss 20345  LSpanclspn 20385  LBasisclbs 20488  LIndSclinds 21164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-sca 17109  df-vsca 17110  df-0g 17283  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-grp 18711  df-minusg 18712  df-sbg 18713  df-subg 18884  df-mgp 19856  df-ur 19873  df-ring 19920  df-lmod 20277  df-lss 20346  df-lsp 20386  df-lbs 20489  df-lindf 21165  df-linds 21166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator