MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds3 Structured version   Visualization version   GIF version

Theorem islinds3 21773
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
Hypotheses
Ref Expression
islinds3.b 𝐵 = (Base‘𝑊)
islinds3.k 𝐾 = (LSpan‘𝑊)
islinds3.x 𝑋 = (𝑊s (𝐾𝑌))
islinds3.j 𝐽 = (LBasis‘𝑋)
Assertion
Ref Expression
islinds3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))

Proof of Theorem islinds3
StepHypRef Expression
1 islinds3.b . . . . 5 𝐵 = (Base‘𝑊)
21linds1 21749 . . . 4 (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵)
32a1i 11 . . 3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵))
4 eqid 2733 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
54linds1 21749 . . . . . 6 (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋))
6 islinds3.x . . . . . . 7 𝑋 = (𝑊s (𝐾𝑌))
76, 1ressbasss 17152 . . . . . 6 (Base‘𝑋) ⊆ 𝐵
85, 7sstrdi 3943 . . . . 5 (𝑌 ∈ (LIndS‘𝑋) → 𝑌𝐵)
98adantr 480 . . . 4 ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵)
109a1i 11 . . 3 (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵))
11 simpl 482 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑊 ∈ LMod)
12 eqid 2733 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 islinds3.k . . . . . . . . 9 𝐾 = (LSpan‘𝑊)
141, 12, 13lspcl 20911 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ∈ (LSubSp‘𝑊))
151, 13lspssid 20920 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑌 ⊆ (𝐾𝑌))
16 eqid 2733 . . . . . . . . 9 (LSpan‘𝑋) = (LSpan‘𝑋)
176, 13, 16, 12lsslsp 20950 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → ((LSpan‘𝑋)‘𝑌) = (𝐾𝑌))
1811, 14, 15, 17syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (𝐾𝑌))
191, 13lspssv 20918 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ⊆ 𝐵)
206, 1ressbas2 17151 . . . . . . . 8 ((𝐾𝑌) ⊆ 𝐵 → (𝐾𝑌) = (Base‘𝑋))
2119, 20syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = (Base‘𝑋))
2218, 21eqtrd 2768 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))
2322biantrud 531 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2412, 6lsslinds 21770 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2511, 14, 15, 24syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2625bicomd 223 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋)))
2726anbi1d 631 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2823, 27bitrd 279 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2928ex 412 . . 3 (𝑊 ∈ LMod → (𝑌𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))))
303, 10, 29pm5.21ndd 379 . 2 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
31 islinds3.j . . 3 𝐽 = (LBasis‘𝑋)
324, 31, 16islbs4 21771 . 2 (𝑌𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))
3330, 32bitr4di 289 1 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LBasisclbs 21010  LIndSclinds 21744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-sca 17179  df-vsca 17180  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lbs 21011  df-lindf 21745  df-linds 21746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator