MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds3 Structured version   Visualization version   GIF version

Theorem islinds3 20796
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
Hypotheses
Ref Expression
islinds3.b 𝐵 = (Base‘𝑊)
islinds3.k 𝐾 = (LSpan‘𝑊)
islinds3.x 𝑋 = (𝑊s (𝐾𝑌))
islinds3.j 𝐽 = (LBasis‘𝑋)
Assertion
Ref Expression
islinds3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))

Proof of Theorem islinds3
StepHypRef Expression
1 islinds3.b . . . . 5 𝐵 = (Base‘𝑊)
21linds1 20772 . . . 4 (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵)
32a1i 11 . . 3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵))
4 eqid 2737 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
54linds1 20772 . . . . . 6 (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋))
6 islinds3.x . . . . . . 7 𝑋 = (𝑊s (𝐾𝑌))
76, 1ressbasss 16792 . . . . . 6 (Base‘𝑋) ⊆ 𝐵
85, 7sstrdi 3913 . . . . 5 (𝑌 ∈ (LIndS‘𝑋) → 𝑌𝐵)
98adantr 484 . . . 4 ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵)
109a1i 11 . . 3 (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵))
11 simpl 486 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑊 ∈ LMod)
12 eqid 2737 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 islinds3.k . . . . . . . . 9 𝐾 = (LSpan‘𝑊)
141, 12, 13lspcl 20013 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ∈ (LSubSp‘𝑊))
151, 13lspssid 20022 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑌 ⊆ (𝐾𝑌))
16 eqid 2737 . . . . . . . . 9 (LSpan‘𝑋) = (LSpan‘𝑋)
176, 13, 16, 12lsslsp 20052 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
1811, 14, 15, 17syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
191, 13lspssv 20020 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ⊆ 𝐵)
206, 1ressbas2 16791 . . . . . . . 8 ((𝐾𝑌) ⊆ 𝐵 → (𝐾𝑌) = (Base‘𝑋))
2119, 20syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = (Base‘𝑋))
2218, 21eqtr3d 2779 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))
2322biantrud 535 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2412, 6lsslinds 20793 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2511, 14, 15, 24syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2625bicomd 226 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋)))
2726anbi1d 633 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2823, 27bitrd 282 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2928ex 416 . . 3 (𝑊 ∈ LMod → (𝑌𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))))
303, 10, 29pm5.21ndd 384 . 2 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
31 islinds3.j . . 3 𝐽 = (LBasis‘𝑋)
324, 31, 16islbs4 20794 . 2 (𝑌𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))
3330, 32bitr4di 292 1 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wss 3866  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  LModclmod 19899  LSubSpclss 19968  LSpanclspn 20008  LBasisclbs 20111  LIndSclinds 20767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-sca 16818  df-vsca 16819  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-mgp 19505  df-ur 19517  df-ring 19564  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lbs 20112  df-lindf 20768  df-linds 20769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator