MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds3 Structured version   Visualization version   GIF version

Theorem islinds3 21041
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
Hypotheses
Ref Expression
islinds3.b 𝐵 = (Base‘𝑊)
islinds3.k 𝐾 = (LSpan‘𝑊)
islinds3.x 𝑋 = (𝑊s (𝐾𝑌))
islinds3.j 𝐽 = (LBasis‘𝑋)
Assertion
Ref Expression
islinds3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))

Proof of Theorem islinds3
StepHypRef Expression
1 islinds3.b . . . . 5 𝐵 = (Base‘𝑊)
21linds1 21017 . . . 4 (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵)
32a1i 11 . . 3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵))
4 eqid 2738 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
54linds1 21017 . . . . . 6 (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋))
6 islinds3.x . . . . . . 7 𝑋 = (𝑊s (𝐾𝑌))
76, 1ressbasss 16950 . . . . . 6 (Base‘𝑋) ⊆ 𝐵
85, 7sstrdi 3933 . . . . 5 (𝑌 ∈ (LIndS‘𝑋) → 𝑌𝐵)
98adantr 481 . . . 4 ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵)
109a1i 11 . . 3 (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵))
11 simpl 483 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑊 ∈ LMod)
12 eqid 2738 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 islinds3.k . . . . . . . . 9 𝐾 = (LSpan‘𝑊)
141, 12, 13lspcl 20238 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ∈ (LSubSp‘𝑊))
151, 13lspssid 20247 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑌 ⊆ (𝐾𝑌))
16 eqid 2738 . . . . . . . . 9 (LSpan‘𝑋) = (LSpan‘𝑋)
176, 13, 16, 12lsslsp 20277 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
1811, 14, 15, 17syl3anc 1370 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
191, 13lspssv 20245 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ⊆ 𝐵)
206, 1ressbas2 16949 . . . . . . . 8 ((𝐾𝑌) ⊆ 𝐵 → (𝐾𝑌) = (Base‘𝑋))
2119, 20syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = (Base‘𝑋))
2218, 21eqtr3d 2780 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))
2322biantrud 532 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2412, 6lsslinds 21038 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2511, 14, 15, 24syl3anc 1370 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2625bicomd 222 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋)))
2726anbi1d 630 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2823, 27bitrd 278 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2928ex 413 . . 3 (𝑊 ∈ LMod → (𝑌𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))))
303, 10, 29pm5.21ndd 381 . 2 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
31 islinds3.j . . 3 𝐽 = (LBasis‘𝑋)
324, 31, 16islbs4 21039 . 2 (𝑌𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))
3330, 32bitr4di 289 1 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LBasisclbs 20336  LIndSclinds 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lbs 20337  df-lindf 21013  df-linds 21014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator