| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rellindf | Structured version Visualization version GIF version | ||
| Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5675. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| rellindf | ⊢ Rel LIndF |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lindf 21745 | . 2 ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel LIndF |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 [wsbc 3737 ∖ cdif 3895 {csn 4575 dom cdm 5619 “ cima 5622 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 LSpanclspn 20906 LIndF clindf 21743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-lindf 21745 |
| This theorem is referenced by: lindff 21754 lindfind 21755 f1lindf 21761 lindfmm 21766 lsslindf 21769 |
| Copyright terms: Public domain | W3C validator |