MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 20770
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5605. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 𝑘 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 20768 . 2 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
21relopabiv 5690 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  wcel 2110  wral 3061  [wsbc 3694  cdif 3863  {csn 4541  dom cdm 5551  cima 5554  Rel wrel 5556  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  LSpanclspn 20008   LIndF clindf 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-opab 5116  df-xp 5557  df-rel 5558  df-lindf 20768
This theorem is referenced by:  lindff  20777  lindfind  20778  f1lindf  20784  lindfmm  20789  lsslindf  20792
  Copyright terms: Public domain W3C validator