MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 21743
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5672. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 𝑘 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 21741 . 2 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
21relopabiv 5760 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2111  wral 3047  [wsbc 3741  cdif 3899  {csn 4576  dom cdm 5616  cima 5619  Rel wrel 5621  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  LSpanclspn 20902   LIndF clindf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-opab 5154  df-xp 5622  df-rel 5623  df-lindf 21741
This theorem is referenced by:  lindff  21750  lindfind  21751  f1lindf  21757  lindfmm  21762  lsslindf  21765
  Copyright terms: Public domain W3C validator