| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rellindf | Structured version Visualization version GIF version | ||
| Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5697. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| rellindf | ⊢ Rel LIndF |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lindf 21722 | . 2 ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel LIndF |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 [wsbc 3756 ∖ cdif 3914 {csn 4592 dom cdm 5641 “ cima 5644 Rel wrel 5646 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 LSpanclspn 20884 LIndF clindf 21720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-lindf 21722 |
| This theorem is referenced by: lindff 21731 lindfind 21732 f1lindf 21738 lindfmm 21743 lsslindf 21746 |
| Copyright terms: Public domain | W3C validator |