MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 21768
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5710. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 𝑘 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 21766 . 2 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
21relopabiv 5799 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wral 3051  [wsbc 3765  cdif 3923  {csn 4601  dom cdm 5654  cima 5657  Rel wrel 5659  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LSpanclspn 20928   LIndF clindf 21764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-opab 5182  df-xp 5660  df-rel 5661  df-lindf 21766
This theorem is referenced by:  lindff  21775  lindfind  21776  f1lindf  21782  lindfmm  21787  lsslindf  21790
  Copyright terms: Public domain W3C validator