MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 21363
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5733. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 π‘˜ 𝑠 𝑀 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 21361 . 2 LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
21relopabiv 5821 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 397   ∈ wcel 2107  βˆ€wral 3062  [wsbc 3778   βˆ– cdif 3946  {csn 4629  dom cdm 5677   β€œ cima 5680  Rel wrel 5682  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  0gc0g 17385  LSpanclspn 20582   LIndF clindf 21359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684  df-lindf 21361
This theorem is referenced by:  lindff  21370  lindfind  21371  f1lindf  21377  lindfmm  21382  lsslindf  21385
  Copyright terms: Public domain W3C validator