MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 21369
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5732. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 π‘˜ 𝑠 𝑀 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 21367 . 2 LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
21relopabiv 5820 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061  [wsbc 3777   βˆ– cdif 3945  {csn 4628  dom cdm 5676   β€œ cima 5679  Rel wrel 5681  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  Scalarcsca 17202   ·𝑠 cvsca 17203  0gc0g 17387  LSpanclspn 20587   LIndF clindf 21365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-lindf 21367
This theorem is referenced by:  lindff  21376  lindfind  21377  f1lindf  21383  lindfmm  21388  lsslindf  21391
  Copyright terms: Public domain W3C validator