Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rellindf | Structured version Visualization version GIF version |
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5634. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
rellindf | ⊢ Rel LIndF |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lindf 20923 | . 2 ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel LIndF |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 [wsbc 3711 ∖ cdif 3880 {csn 4558 dom cdm 5580 “ cima 5583 Rel wrel 5585 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LSpanclspn 20148 LIndF clindf 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-lindf 20923 |
This theorem is referenced by: lindff 20932 lindfind 20933 f1lindf 20939 lindfmm 20944 lsslindf 20947 |
Copyright terms: Public domain | W3C validator |