MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rellindf Structured version   Visualization version   GIF version

Theorem rellindf 21747
Description: The independent-family predicate is a proper relation and can be used with brrelex1i 5675. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
rellindf Rel LIndF

Proof of Theorem rellindf
Dummy variables 𝑓 𝑘 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lindf 21745 . 2 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
21relopabiv 5764 1 Rel LIndF
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2113  wral 3048  [wsbc 3737  cdif 3895  {csn 4575  dom cdm 5619  cima 5622  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  LSpanclspn 20906   LIndF clindf 21743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-opab 5156  df-xp 5625  df-rel 5626  df-lindf 21745
This theorem is referenced by:  lindff  21754  lindfind  21755  f1lindf  21761  lindfmm  21766  lsslindf  21769
  Copyright terms: Public domain W3C validator