![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds4 | Structured version Visualization version GIF version |
Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
islinds4 | ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec) | |
2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 2 | linds1 21848 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊)) |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊)) |
5 | lveclmod 21123 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑊 ∈ LMod) |
7 | eqid 2735 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | 7 | lvecdrng 21122 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
9 | drngnzr 20765 | . . . . . . . 8 ⊢ ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing) |
11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → (Scalar‘𝑊) ∈ NzRing) |
12 | simplr 769 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ (LIndS‘𝑊)) | |
13 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
14 | eqid 2735 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
15 | 14, 7 | lindsind2 21857 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
16 | 6, 11, 12, 13, 15 | syl211anc 1375 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
17 | 16 | ralrimiva 3144 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
18 | islinds4.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
19 | 18, 2, 14 | lbsext 21183 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
20 | 1, 4, 17, 19 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
21 | 20 | ex 412 | . 2 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
22 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑊 ∈ LMod) |
23 | 18 | lbslinds 21871 | . . . . . 6 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
24 | 23 | sseli 3991 | . . . . 5 ⊢ (𝑏 ∈ 𝐽 → 𝑏 ∈ (LIndS‘𝑊)) |
25 | 24 | ad2antlr 727 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑏 ∈ (LIndS‘𝑊)) |
26 | simpr 484 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ⊆ 𝑏) | |
27 | lindsss 21862 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) | |
28 | 22, 25, 26, 27 | syl3anc 1370 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) |
29 | 28 | rexlimdva2 3155 | . 2 ⊢ (𝑊 ∈ LVec → (∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 → 𝑌 ∈ (LIndS‘𝑊))) |
30 | 21, 29 | impbid 212 | 1 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ‘cfv 6563 Basecbs 17245 Scalarcsca 17301 NzRingcnzr 20529 DivRingcdr 20746 LModclmod 20875 LSpanclspn 20987 LBasisclbs 21091 LVecclvec 21119 LIndSclinds 21843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rpss 7742 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-nzr 20530 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lbs 21092 df-lvec 21120 df-lindf 21844 df-linds 21845 |
This theorem is referenced by: lssdimle 33635 dimkerim 33655 |
Copyright terms: Public domain | W3C validator |