![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds4 | Structured version Visualization version GIF version |
Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
islinds4 | ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec) | |
2 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 2 | linds1 21853 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊)) |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊)) |
5 | lveclmod 21128 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑊 ∈ LMod) |
7 | eqid 2740 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | 7 | lvecdrng 21127 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
9 | drngnzr 20770 | . . . . . . . 8 ⊢ ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing) |
11 | 10 | ad2antrr 725 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → (Scalar‘𝑊) ∈ NzRing) |
12 | simplr 768 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ (LIndS‘𝑊)) | |
13 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
14 | eqid 2740 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
15 | 14, 7 | lindsind2 21862 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
16 | 6, 11, 12, 13, 15 | syl211anc 1376 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
17 | 16 | ralrimiva 3152 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
18 | islinds4.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
19 | 18, 2, 14 | lbsext 21188 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
20 | 1, 4, 17, 19 | syl3anc 1371 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
21 | 20 | ex 412 | . 2 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
22 | 5 | ad2antrr 725 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑊 ∈ LMod) |
23 | 18 | lbslinds 21876 | . . . . . 6 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
24 | 23 | sseli 4004 | . . . . 5 ⊢ (𝑏 ∈ 𝐽 → 𝑏 ∈ (LIndS‘𝑊)) |
25 | 24 | ad2antlr 726 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑏 ∈ (LIndS‘𝑊)) |
26 | simpr 484 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ⊆ 𝑏) | |
27 | lindsss 21867 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) | |
28 | 22, 25, 26, 27 | syl3anc 1371 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) |
29 | 28 | rexlimdva2 3163 | . 2 ⊢ (𝑊 ∈ LVec → (∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 → 𝑌 ∈ (LIndS‘𝑊))) |
30 | 21, 29 | impbid 212 | 1 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Basecbs 17258 Scalarcsca 17314 NzRingcnzr 20538 DivRingcdr 20751 LModclmod 20880 LSpanclspn 20992 LBasisclbs 21096 LVecclvec 21124 LIndSclinds 21848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lbs 21097 df-lvec 21125 df-lindf 21849 df-linds 21850 |
This theorem is referenced by: lssdimle 33620 dimkerim 33640 |
Copyright terms: Public domain | W3C validator |