MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds4 Structured version   Visualization version   GIF version

Theorem islinds4 20450
Description: A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds4.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
islinds4 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Distinct variable groups:   𝐽,𝑏   𝑊,𝑏   𝑌,𝑏

Proof of Theorem islinds4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec)
2 eqid 2765 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
32linds1 20425 . . . . 5 (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊))
43adantl 473 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊))
5 lveclmod 19378 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
65ad2antrr 717 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑊 ∈ LMod)
7 eqid 2765 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
87lvecdrng 19377 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
9 drngnzr 19536 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing)
108, 9syl 17 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing)
1110ad2antrr 717 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → (Scalar‘𝑊) ∈ NzRing)
12 simplr 785 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑌 ∈ (LIndS‘𝑊))
13 simpr 477 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑥𝑌)
14 eqid 2765 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
1514, 7lindsind2 20434 . . . . . 6 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
166, 11, 12, 13, 15syl211anc 1495 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
1716ralrimiva 3113 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
18 islinds4.j . . . . 5 𝐽 = (LBasis‘𝑊)
1918, 2, 14lbsext 19437 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏𝐽 𝑌𝑏)
201, 4, 17, 19syl3anc 1490 . . 3 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏𝐽 𝑌𝑏)
2120ex 401 . 2 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏𝐽 𝑌𝑏))
225ad2antrr 717 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑊 ∈ LMod)
2318lbslinds 20448 . . . . . . 7 𝐽 ⊆ (LIndS‘𝑊)
2423sseli 3757 . . . . . 6 (𝑏𝐽𝑏 ∈ (LIndS‘𝑊))
2524ad2antlr 718 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑏 ∈ (LIndS‘𝑊))
26 simpr 477 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌𝑏)
27 lindsss 20439 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2822, 25, 26, 27syl3anc 1490 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2928ex 401 . . 3 ((𝑊 ∈ LVec ∧ 𝑏𝐽) → (𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3029rexlimdva 3178 . 2 (𝑊 ∈ LVec → (∃𝑏𝐽 𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3121, 30impbid 203 1 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  cdif 3729  wss 3732  {csn 4334  cfv 6068  Basecbs 16132  Scalarcsca 16219  DivRingcdr 19016  LModclmod 19132  LSpanclspn 19243  LBasisclbs 19346  LVecclvec 19374  NzRingcnzr 19531  LIndSclinds 20420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-ac2 9538  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-rpss 7135  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-ac 9190  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-sbg 17696  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lbs 19347  df-lvec 19375  df-nzr 19532  df-lindf 20421  df-linds 20422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator