![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds4 | Structured version Visualization version GIF version |
Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds4.j | β’ π½ = (LBasisβπ) |
Ref | Expression |
---|---|
islinds4 | β’ (π β LVec β (π β (LIndSβπ) β βπ β π½ π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 β’ ((π β LVec β§ π β (LIndSβπ)) β π β LVec) | |
2 | eqid 2725 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
3 | 2 | linds1 21746 | . . . . 5 β’ (π β (LIndSβπ) β π β (Baseβπ)) |
4 | 3 | adantl 480 | . . . 4 β’ ((π β LVec β§ π β (LIndSβπ)) β π β (Baseβπ)) |
5 | lveclmod 20993 | . . . . . . 7 β’ (π β LVec β π β LMod) | |
6 | 5 | ad2antrr 724 | . . . . . 6 β’ (((π β LVec β§ π β (LIndSβπ)) β§ π₯ β π) β π β LMod) |
7 | eqid 2725 | . . . . . . . . 9 β’ (Scalarβπ) = (Scalarβπ) | |
8 | 7 | lvecdrng 20992 | . . . . . . . 8 β’ (π β LVec β (Scalarβπ) β DivRing) |
9 | drngnzr 20646 | . . . . . . . 8 β’ ((Scalarβπ) β DivRing β (Scalarβπ) β NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . 7 β’ (π β LVec β (Scalarβπ) β NzRing) |
11 | 10 | ad2antrr 724 | . . . . . 6 β’ (((π β LVec β§ π β (LIndSβπ)) β§ π₯ β π) β (Scalarβπ) β NzRing) |
12 | simplr 767 | . . . . . 6 β’ (((π β LVec β§ π β (LIndSβπ)) β§ π₯ β π) β π β (LIndSβπ)) | |
13 | simpr 483 | . . . . . 6 β’ (((π β LVec β§ π β (LIndSβπ)) β§ π₯ β π) β π₯ β π) | |
14 | eqid 2725 | . . . . . . 7 β’ (LSpanβπ) = (LSpanβπ) | |
15 | 14, 7 | lindsind2 21755 | . . . . . 6 β’ (((π β LMod β§ (Scalarβπ) β NzRing) β§ π β (LIndSβπ) β§ π₯ β π) β Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))) |
16 | 6, 11, 12, 13, 15 | syl211anc 1373 | . . . . 5 β’ (((π β LVec β§ π β (LIndSβπ)) β§ π₯ β π) β Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))) |
17 | 16 | ralrimiva 3136 | . . . 4 β’ ((π β LVec β§ π β (LIndSβπ)) β βπ₯ β π Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))) |
18 | islinds4.j | . . . . 5 β’ π½ = (LBasisβπ) | |
19 | 18, 2, 14 | lbsext 21053 | . . . 4 β’ ((π β LVec β§ π β (Baseβπ) β§ βπ₯ β π Β¬ π₯ β ((LSpanβπ)β(π β {π₯}))) β βπ β π½ π β π) |
20 | 1, 4, 17, 19 | syl3anc 1368 | . . 3 β’ ((π β LVec β§ π β (LIndSβπ)) β βπ β π½ π β π) |
21 | 20 | ex 411 | . 2 β’ (π β LVec β (π β (LIndSβπ) β βπ β π½ π β π)) |
22 | 5 | ad2antrr 724 | . . . 4 β’ (((π β LVec β§ π β π½) β§ π β π) β π β LMod) |
23 | 18 | lbslinds 21769 | . . . . . 6 β’ π½ β (LIndSβπ) |
24 | 23 | sseli 3968 | . . . . 5 β’ (π β π½ β π β (LIndSβπ)) |
25 | 24 | ad2antlr 725 | . . . 4 β’ (((π β LVec β§ π β π½) β§ π β π) β π β (LIndSβπ)) |
26 | simpr 483 | . . . 4 β’ (((π β LVec β§ π β π½) β§ π β π) β π β π) | |
27 | lindsss 21760 | . . . 4 β’ ((π β LMod β§ π β (LIndSβπ) β§ π β π) β π β (LIndSβπ)) | |
28 | 22, 25, 26, 27 | syl3anc 1368 | . . 3 β’ (((π β LVec β§ π β π½) β§ π β π) β π β (LIndSβπ)) |
29 | 28 | rexlimdva2 3147 | . 2 β’ (π β LVec β (βπ β π½ π β π β π β (LIndSβπ))) |
30 | 21, 29 | impbid 211 | 1 β’ (π β LVec β (π β (LIndSβπ) β βπ β π½ π β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 βwrex 3060 β cdif 3936 β wss 3939 {csn 4622 βcfv 6541 Basecbs 17177 Scalarcsca 17233 NzRingcnzr 20453 DivRingcdr 20626 LModclmod 20745 LSpanclspn 20857 LBasisclbs 20961 LVecclvec 20989 LIndSclinds 21741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rpss 7724 df-om 7867 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-nzr 20454 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lbs 20962 df-lvec 20990 df-lindf 21742 df-linds 21743 |
This theorem is referenced by: lssdimle 33334 dimkerim 33354 |
Copyright terms: Public domain | W3C validator |