MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds4 Structured version   Visualization version   GIF version

Theorem islinds4 20671
Description: A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds4.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
islinds4 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Distinct variable groups:   𝐽,𝑏   𝑊,𝑏   𝑌,𝑏

Proof of Theorem islinds4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 475 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec)
2 eqid 2772 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
32linds1 20646 . . . . 5 (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊))
43adantl 474 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊))
5 lveclmod 19590 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
65ad2antrr 713 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑊 ∈ LMod)
7 eqid 2772 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
87lvecdrng 19589 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
9 drngnzr 19746 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing)
108, 9syl 17 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing)
1110ad2antrr 713 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → (Scalar‘𝑊) ∈ NzRing)
12 simplr 756 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑌 ∈ (LIndS‘𝑊))
13 simpr 477 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑥𝑌)
14 eqid 2772 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
1514, 7lindsind2 20655 . . . . . 6 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
166, 11, 12, 13, 15syl211anc 1356 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
1716ralrimiva 3126 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
18 islinds4.j . . . . 5 𝐽 = (LBasis‘𝑊)
1918, 2, 14lbsext 19647 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏𝐽 𝑌𝑏)
201, 4, 17, 19syl3anc 1351 . . 3 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏𝐽 𝑌𝑏)
2120ex 405 . 2 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏𝐽 𝑌𝑏))
225ad2antrr 713 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑊 ∈ LMod)
2318lbslinds 20669 . . . . . 6 𝐽 ⊆ (LIndS‘𝑊)
2423sseli 3850 . . . . 5 (𝑏𝐽𝑏 ∈ (LIndS‘𝑊))
2524ad2antlr 714 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑏 ∈ (LIndS‘𝑊))
26 simpr 477 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌𝑏)
27 lindsss 20660 . . . 4 ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2822, 25, 26, 27syl3anc 1351 . . 3 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2928rexlimdva2 3226 . 2 (𝑊 ∈ LVec → (∃𝑏𝐽 𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3021, 29impbid 204 1 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wral 3082  wrex 3083  cdif 3822  wss 3825  {csn 4435  cfv 6182  Basecbs 16329  Scalarcsca 16414  DivRingcdr 19215  LModclmod 19346  LSpanclspn 19455  LBasisclbs 19558  LVecclvec 19586  NzRingcnzr 19741  LIndSclinds 20641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-ac2 9675  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-rpss 7261  df-om 7391  df-1st 7494  df-2nd 7495  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-ac 9328  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-sbg 17886  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-drng 19217  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lbs 19559  df-lvec 19587  df-nzr 19742  df-lindf 20642  df-linds 20643
This theorem is referenced by:  lssdimle  30591  dimkerim  30608
  Copyright terms: Public domain W3C validator