![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds4 | Structured version Visualization version GIF version |
Description: A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
islinds4 | ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec) | |
2 | eqid 2772 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 2 | linds1 20646 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊)) |
4 | 3 | adantl 474 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊)) |
5 | lveclmod 19590 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 5 | ad2antrr 713 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑊 ∈ LMod) |
7 | eqid 2772 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | 7 | lvecdrng 19589 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
9 | drngnzr 19746 | . . . . . . . 8 ⊢ ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing) |
11 | 10 | ad2antrr 713 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → (Scalar‘𝑊) ∈ NzRing) |
12 | simplr 756 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ (LIndS‘𝑊)) | |
13 | simpr 477 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
14 | eqid 2772 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
15 | 14, 7 | lindsind2 20655 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
16 | 6, 11, 12, 13, 15 | syl211anc 1356 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
17 | 16 | ralrimiva 3126 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
18 | islinds4.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
19 | 18, 2, 14 | lbsext 19647 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
20 | 1, 4, 17, 19 | syl3anc 1351 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
21 | 20 | ex 405 | . 2 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
22 | 5 | ad2antrr 713 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑊 ∈ LMod) |
23 | 18 | lbslinds 20669 | . . . . . 6 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
24 | 23 | sseli 3850 | . . . . 5 ⊢ (𝑏 ∈ 𝐽 → 𝑏 ∈ (LIndS‘𝑊)) |
25 | 24 | ad2antlr 714 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑏 ∈ (LIndS‘𝑊)) |
26 | simpr 477 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ⊆ 𝑏) | |
27 | lindsss 20660 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) | |
28 | 22, 25, 26, 27 | syl3anc 1351 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) |
29 | 28 | rexlimdva2 3226 | . 2 ⊢ (𝑊 ∈ LVec → (∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 → 𝑌 ∈ (LIndS‘𝑊))) |
30 | 21, 29 | impbid 204 | 1 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ∃wrex 3083 ∖ cdif 3822 ⊆ wss 3825 {csn 4435 ‘cfv 6182 Basecbs 16329 Scalarcsca 16414 DivRingcdr 19215 LModclmod 19346 LSpanclspn 19455 LBasisclbs 19558 LVecclvec 19586 NzRingcnzr 19741 LIndSclinds 20641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-ac2 9675 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-rpss 7261 df-om 7391 df-1st 7494 df-2nd 7495 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-dju 9116 df-card 9154 df-ac 9328 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-minusg 17885 df-sbg 17886 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-drng 19217 df-lmod 19348 df-lss 19416 df-lsp 19456 df-lbs 19559 df-lvec 19587 df-nzr 19742 df-lindf 20642 df-linds 20643 |
This theorem is referenced by: lssdimle 30591 dimkerim 30608 |
Copyright terms: Public domain | W3C validator |