![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds4 | Structured version Visualization version GIF version |
Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds4.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
islinds4 | ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec) | |
2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 2 | linds1 21298 | . . . . 5 ⊢ (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊)) |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊)) |
5 | lveclmod 20666 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 5 | ad2antrr 724 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑊 ∈ LMod) |
7 | eqid 2731 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | 7 | lvecdrng 20665 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
9 | drngnzr 20284 | . . . . . . . 8 ⊢ ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing) |
11 | 10 | ad2antrr 724 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → (Scalar‘𝑊) ∈ NzRing) |
12 | simplr 767 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ (LIndS‘𝑊)) | |
13 | simpr 485 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
14 | eqid 2731 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
15 | 14, 7 | lindsind2 21307 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
16 | 6, 11, 12, 13, 15 | syl211anc 1376 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥 ∈ 𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
17 | 16 | ralrimiva 3145 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) |
18 | islinds4.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
19 | 18, 2, 14 | lbsext 20725 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
20 | 1, 4, 17, 19 | syl3anc 1371 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏) |
21 | 20 | ex 413 | . 2 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
22 | 5 | ad2antrr 724 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑊 ∈ LMod) |
23 | 18 | lbslinds 21321 | . . . . . 6 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
24 | 23 | sseli 3974 | . . . . 5 ⊢ (𝑏 ∈ 𝐽 → 𝑏 ∈ (LIndS‘𝑊)) |
25 | 24 | ad2antlr 725 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑏 ∈ (LIndS‘𝑊)) |
26 | simpr 485 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ⊆ 𝑏) | |
27 | lindsss 21312 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) | |
28 | 22, 25, 26, 27 | syl3anc 1371 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝑏 ∈ 𝐽) ∧ 𝑌 ⊆ 𝑏) → 𝑌 ∈ (LIndS‘𝑊)) |
29 | 28 | rexlimdva2 3156 | . 2 ⊢ (𝑊 ∈ LVec → (∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏 → 𝑌 ∈ (LIndS‘𝑊))) |
30 | 21, 29 | impbid 211 | 1 ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∃wrex 3069 ∖ cdif 3941 ⊆ wss 3944 {csn 4622 ‘cfv 6532 Basecbs 17126 Scalarcsca 17182 NzRingcnzr 20241 DivRingcdr 20265 LModclmod 20420 LSpanclspn 20531 LBasisclbs 20634 LVecclvec 20662 LIndSclinds 21293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-ac2 10440 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-rpss 7696 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9878 df-card 9916 df-ac 10093 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 df-minusg 18798 df-sbg 18799 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-nzr 20242 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lbs 20635 df-lvec 20663 df-lindf 21294 df-linds 21295 |
This theorem is referenced by: lssdimle 32529 dimkerim 32548 |
Copyright terms: Public domain | W3C validator |