MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds4 Structured version   Visualization version   GIF version

Theorem islinds4 21720
Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds4.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
islinds4 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Distinct variable groups:   𝐽,𝑏   𝑊,𝑏   𝑌,𝑏

Proof of Theorem islinds4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑊 ∈ LVec)
2 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
32linds1 21695 . . . . 5 (𝑌 ∈ (LIndS‘𝑊) → 𝑌 ⊆ (Base‘𝑊))
43adantl 481 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → 𝑌 ⊆ (Base‘𝑊))
5 lveclmod 20989 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
65ad2antrr 726 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑊 ∈ LMod)
7 eqid 2729 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
87lvecdrng 20988 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
9 drngnzr 20633 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (Scalar‘𝑊) ∈ NzRing)
108, 9syl 17 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ NzRing)
1110ad2antrr 726 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → (Scalar‘𝑊) ∈ NzRing)
12 simplr 768 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑌 ∈ (LIndS‘𝑊))
13 simpr 484 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → 𝑥𝑌)
14 eqid 2729 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
1514, 7lindsind2 21704 . . . . . 6 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝑌 ∈ (LIndS‘𝑊) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
166, 11, 12, 13, 15syl211anc 1378 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) ∧ 𝑥𝑌) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
1716ralrimiva 3125 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥})))
18 islinds4.j . . . . 5 𝐽 = (LBasis‘𝑊)
1918, 2, 14lbsext 21049 . . . 4 ((𝑊 ∈ LVec ∧ 𝑌 ⊆ (Base‘𝑊) ∧ ∀𝑥𝑌 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑌 ∖ {𝑥}))) → ∃𝑏𝐽 𝑌𝑏)
201, 4, 17, 19syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ 𝑌 ∈ (LIndS‘𝑊)) → ∃𝑏𝐽 𝑌𝑏)
2120ex 412 . 2 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) → ∃𝑏𝐽 𝑌𝑏))
225ad2antrr 726 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑊 ∈ LMod)
2318lbslinds 21718 . . . . . 6 𝐽 ⊆ (LIndS‘𝑊)
2423sseli 3939 . . . . 5 (𝑏𝐽𝑏 ∈ (LIndS‘𝑊))
2524ad2antlr 727 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑏 ∈ (LIndS‘𝑊))
26 simpr 484 . . . 4 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌𝑏)
27 lindsss 21709 . . . 4 ((𝑊 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑊) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2822, 25, 26, 27syl3anc 1373 . . 3 (((𝑊 ∈ LVec ∧ 𝑏𝐽) ∧ 𝑌𝑏) → 𝑌 ∈ (LIndS‘𝑊))
2928rexlimdva2 3136 . 2 (𝑊 ∈ LVec → (∃𝑏𝐽 𝑌𝑏𝑌 ∈ (LIndS‘𝑊)))
3021, 29impbid 212 1 (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏𝐽 𝑌𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3908  wss 3911  {csn 4585  cfv 6499  Basecbs 17155  Scalarcsca 17199  NzRingcnzr 20397  DivRingcdr 20614  LModclmod 20742  LSpanclspn 20853  LBasisclbs 20957  LVecclvec 20985  LIndSclinds 21690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lbs 20958  df-lvec 20986  df-lindf 21691  df-linds 21692
This theorem is referenced by:  lssdimle  33576  dimkerim  33596
  Copyright terms: Public domain W3C validator