MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds Structured version   Visualization version   GIF version

Theorem islinds 20498
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islinds (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))

Proof of Theorem islinds
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . . 5 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6645 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
32pweqd 4516 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
4 breq2 5034 . . . . . . 7 (𝑤 = 𝑊 → (( I ↾ 𝑠) LIndF 𝑤 ↔ ( I ↾ 𝑠) LIndF 𝑊))
53, 4rabeqbidv 3433 . . . . . 6 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤} = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
6 df-linds 20496 . . . . . 6 LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
7 fvex 6658 . . . . . . . 8 (Base‘𝑊) ∈ V
87pwex 5246 . . . . . . 7 𝒫 (Base‘𝑊) ∈ V
98rabex 5199 . . . . . 6 {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ∈ V
105, 6, 9fvmpt 6745 . . . . 5 (𝑊 ∈ V → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
111, 10syl 17 . . . 4 (𝑊𝑉 → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
1211eleq2d 2875 . . 3 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}))
13 reseq2 5813 . . . . 5 (𝑠 = 𝑋 → ( I ↾ 𝑠) = ( I ↾ 𝑋))
1413breq1d 5040 . . . 4 (𝑠 = 𝑋 → (( I ↾ 𝑠) LIndF 𝑊 ↔ ( I ↾ 𝑋) LIndF 𝑊))
1514elrab 3628 . . 3 (𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))
1612, 15syl6bb 290 . 2 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
177elpw2 5212 . . . 4 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ (Base‘𝑊))
18 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
1918sseq2i 3944 . . . 4 (𝑋𝐵𝑋 ⊆ (Base‘𝑊))
2017, 19bitr4i 281 . . 3 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋𝐵)
2120anbi1i 626 . 2 ((𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
2216, 21syl6bb 290 1 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   class class class wbr 5030   I cid 5424  cres 5521  cfv 6324  Basecbs 16475   LIndF clindf 20493  LIndSclinds 20494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-linds 20496
This theorem is referenced by:  linds1  20499  linds2  20500  islinds2  20502  lindsss  20513  lindsmm  20517  lsslinds  20520  islinds5  30983  lindspropd  30997
  Copyright terms: Public domain W3C validator