MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds Structured version   Visualization version   GIF version

Theorem islinds 21355
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
islinds (π‘Š ∈ 𝑉 β†’ (𝑋 ∈ (LIndSβ€˜π‘Š) ↔ (𝑋 βŠ† 𝐡 ∧ ( I β†Ύ 𝑋) LIndF π‘Š)))

Proof of Theorem islinds
Dummy variables 𝑠 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . . . . 5 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
2 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
32pweqd 4618 . . . . . . 7 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜π‘€) = 𝒫 (Baseβ€˜π‘Š))
4 breq2 5151 . . . . . . 7 (𝑀 = π‘Š β†’ (( I β†Ύ 𝑠) LIndF 𝑀 ↔ ( I β†Ύ 𝑠) LIndF π‘Š))
53, 4rabeqbidv 3449 . . . . . 6 (𝑀 = π‘Š β†’ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ( I β†Ύ 𝑠) LIndF 𝑀} = {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š})
6 df-linds 21353 . . . . . 6 LIndS = (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ( I β†Ύ 𝑠) LIndF 𝑀})
7 fvex 6901 . . . . . . . 8 (Baseβ€˜π‘Š) ∈ V
87pwex 5377 . . . . . . 7 𝒫 (Baseβ€˜π‘Š) ∈ V
98rabex 5331 . . . . . 6 {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š} ∈ V
105, 6, 9fvmpt 6995 . . . . 5 (π‘Š ∈ V β†’ (LIndSβ€˜π‘Š) = {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š})
111, 10syl 17 . . . 4 (π‘Š ∈ 𝑉 β†’ (LIndSβ€˜π‘Š) = {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š})
1211eleq2d 2819 . . 3 (π‘Š ∈ 𝑉 β†’ (𝑋 ∈ (LIndSβ€˜π‘Š) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š}))
13 reseq2 5974 . . . . 5 (𝑠 = 𝑋 β†’ ( I β†Ύ 𝑠) = ( I β†Ύ 𝑋))
1413breq1d 5157 . . . 4 (𝑠 = 𝑋 β†’ (( I β†Ύ 𝑠) LIndF π‘Š ↔ ( I β†Ύ 𝑋) LIndF π‘Š))
1514elrab 3682 . . 3 (𝑋 ∈ {𝑠 ∈ 𝒫 (Baseβ€˜π‘Š) ∣ ( I β†Ύ 𝑠) LIndF π‘Š} ↔ (𝑋 ∈ 𝒫 (Baseβ€˜π‘Š) ∧ ( I β†Ύ 𝑋) LIndF π‘Š))
1612, 15bitrdi 286 . 2 (π‘Š ∈ 𝑉 β†’ (𝑋 ∈ (LIndSβ€˜π‘Š) ↔ (𝑋 ∈ 𝒫 (Baseβ€˜π‘Š) ∧ ( I β†Ύ 𝑋) LIndF π‘Š)))
177elpw2 5344 . . . 4 (𝑋 ∈ 𝒫 (Baseβ€˜π‘Š) ↔ 𝑋 βŠ† (Baseβ€˜π‘Š))
18 islinds.b . . . . 5 𝐡 = (Baseβ€˜π‘Š)
1918sseq2i 4010 . . . 4 (𝑋 βŠ† 𝐡 ↔ 𝑋 βŠ† (Baseβ€˜π‘Š))
2017, 19bitr4i 277 . . 3 (𝑋 ∈ 𝒫 (Baseβ€˜π‘Š) ↔ 𝑋 βŠ† 𝐡)
2120anbi1i 624 . 2 ((𝑋 ∈ 𝒫 (Baseβ€˜π‘Š) ∧ ( I β†Ύ 𝑋) LIndF π‘Š) ↔ (𝑋 βŠ† 𝐡 ∧ ( I β†Ύ 𝑋) LIndF π‘Š))
2216, 21bitrdi 286 1 (π‘Š ∈ 𝑉 β†’ (𝑋 ∈ (LIndSβ€˜π‘Š) ↔ (𝑋 βŠ† 𝐡 ∧ ( I β†Ύ 𝑋) LIndF π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601   class class class wbr 5147   I cid 5572   β†Ύ cres 5677  β€˜cfv 6540  Basecbs 17140   LIndF clindf 21350  LIndSclinds 21351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-linds 21353
This theorem is referenced by:  linds1  21356  linds2  21357  islinds2  21359  lindsss  21370  lindsmm  21374  lsslinds  21377  islinds5  32468  lindspropd  32487
  Copyright terms: Public domain W3C validator