![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islinds | Structured version Visualization version GIF version |
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
islinds | ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
3 | 2 | pweqd 4639 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊)) |
4 | breq2 5170 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (( I ↾ 𝑠) LIndF 𝑤 ↔ ( I ↾ 𝑠) LIndF 𝑊)) | |
5 | 3, 4 | rabeqbidv 3462 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤} = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
6 | df-linds 21850 | . . . . . 6 ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | |
7 | fvex 6933 | . . . . . . . 8 ⊢ (Base‘𝑊) ∈ V | |
8 | 7 | pwex 5398 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑊) ∈ V |
9 | 8 | rabex 5357 | . . . . . 6 ⊢ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ∈ V |
10 | 5, 6, 9 | fvmpt 7029 | . . . . 5 ⊢ (𝑊 ∈ V → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}) |
12 | 11 | eleq2d 2830 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})) |
13 | reseq2 6004 | . . . . 5 ⊢ (𝑠 = 𝑋 → ( I ↾ 𝑠) = ( I ↾ 𝑋)) | |
14 | 13 | breq1d 5176 | . . . 4 ⊢ (𝑠 = 𝑋 → (( I ↾ 𝑠) LIndF 𝑊 ↔ ( I ↾ 𝑋) LIndF 𝑊)) |
15 | 14 | elrab 3708 | . . 3 ⊢ (𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
16 | 12, 15 | bitrdi 287 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
17 | 7 | elpw2 5352 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ (Base‘𝑊)) |
18 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
19 | 18 | sseq2i 4038 | . . . 4 ⊢ (𝑋 ⊆ 𝐵 ↔ 𝑋 ⊆ (Base‘𝑊)) |
20 | 17, 19 | bitr4i 278 | . . 3 ⊢ (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ 𝐵) |
21 | 20 | anbi1i 623 | . 2 ⊢ ((𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
22 | 16, 21 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 I cid 5592 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 LIndF clindf 21847 LIndSclinds 21848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-linds 21850 |
This theorem is referenced by: linds1 21853 linds2 21854 islinds2 21856 lindsss 21867 lindsmm 21871 lsslinds 21874 islinds5 33360 lindspropd 33376 |
Copyright terms: Public domain | W3C validator |