MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds Structured version   Visualization version   GIF version

Theorem islinds 21718
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islinds (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))

Proof of Theorem islinds
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . . . 5 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
32pweqd 4580 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
4 breq2 5111 . . . . . . 7 (𝑤 = 𝑊 → (( I ↾ 𝑠) LIndF 𝑤 ↔ ( I ↾ 𝑠) LIndF 𝑊))
53, 4rabeqbidv 3424 . . . . . 6 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤} = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
6 df-linds 21716 . . . . . 6 LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
7 fvex 6871 . . . . . . . 8 (Base‘𝑊) ∈ V
87pwex 5335 . . . . . . 7 𝒫 (Base‘𝑊) ∈ V
98rabex 5294 . . . . . 6 {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ∈ V
105, 6, 9fvmpt 6968 . . . . 5 (𝑊 ∈ V → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
111, 10syl 17 . . . 4 (𝑊𝑉 → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
1211eleq2d 2814 . . 3 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}))
13 reseq2 5945 . . . . 5 (𝑠 = 𝑋 → ( I ↾ 𝑠) = ( I ↾ 𝑋))
1413breq1d 5117 . . . 4 (𝑠 = 𝑋 → (( I ↾ 𝑠) LIndF 𝑊 ↔ ( I ↾ 𝑋) LIndF 𝑊))
1514elrab 3659 . . 3 (𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))
1612, 15bitrdi 287 . 2 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
177elpw2 5289 . . . 4 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ (Base‘𝑊))
18 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
1918sseq2i 3976 . . . 4 (𝑋𝐵𝑋 ⊆ (Base‘𝑊))
2017, 19bitr4i 278 . . 3 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋𝐵)
2120anbi1i 624 . 2 ((𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
2216, 21bitrdi 287 1 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   class class class wbr 5107   I cid 5532  cres 5640  cfv 6511  Basecbs 17179   LIndF clindf 21713  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-linds 21716
This theorem is referenced by:  linds1  21719  linds2  21720  islinds2  21722  lindsss  21733  lindsmm  21737  lsslinds  21740  islinds5  33338  lindspropd  33354
  Copyright terms: Public domain W3C validator