MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21352
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21372, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21384) and only one representation for each element of the range (islindf5 21385). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Distinct variable group:   𝑀,𝑓,𝑠,π‘₯,π‘˜

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21350 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1540 . . . . . 6 class 𝑓
43cdm 5675 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑀
65cv 1540 . . . . . 6 class 𝑀
7 cbs 17140 . . . . . 6 class Base
86, 7cfv 6540 . . . . 5 class (Baseβ€˜π‘€)
94, 8, 3wf 6536 . . . 4 wff 𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€)
10 vk . . . . . . . . . . 11 setvar π‘˜
1110cv 1540 . . . . . . . . . 10 class π‘˜
12 vx . . . . . . . . . . . 12 setvar π‘₯
1312cv 1540 . . . . . . . . . . 11 class π‘₯
1413, 3cfv 6540 . . . . . . . . . 10 class (π‘“β€˜π‘₯)
15 cvsca 17197 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6540 . . . . . . . . . 10 class ( ·𝑠 β€˜π‘€)
1711, 14, 16co 7405 . . . . . . . . 9 class (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯))
1813csn 4627 . . . . . . . . . . . 12 class {π‘₯}
194, 18cdif 3944 . . . . . . . . . . 11 class (dom 𝑓 βˆ– {π‘₯})
203, 19cima 5678 . . . . . . . . . 10 class (𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))
21 clspn 20574 . . . . . . . . . . 11 class LSpan
226, 21cfv 6540 . . . . . . . . . 10 class (LSpanβ€˜π‘€)
2320, 22cfv 6540 . . . . . . . . 9 class ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2417, 23wcel 2106 . . . . . . . 8 wff (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2524wn 3 . . . . . . 7 wff Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1540 . . . . . . . . 9 class 𝑠
2827, 7cfv 6540 . . . . . . . 8 class (Baseβ€˜π‘ )
29 c0g 17381 . . . . . . . . . 10 class 0g
3027, 29cfv 6540 . . . . . . . . 9 class (0gβ€˜π‘ )
3130csn 4627 . . . . . . . 8 class {(0gβ€˜π‘ )}
3228, 31cdif 3944 . . . . . . 7 class ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )})
3325, 10, 32wral 3061 . . . . . 6 wff βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
3433, 12, 4wral 3061 . . . . 5 wff βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
35 csca 17196 . . . . . 6 class Scalar
366, 35cfv 6540 . . . . 5 class (Scalarβ€˜π‘€)
3734, 26, 36wsbc 3776 . . . 4 wff [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
389, 37wa 396 . . 3 wff (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))
3938, 2, 5copab 5209 . 2 class {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
401, 39wceq 1541 1 wff LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21354  islindf  21358
  Copyright terms: Public domain W3C validator