MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21013
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21033, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21045) and only one representation for each element of the range (islindf5 21046). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Distinct variable group:   𝑤,𝑓,𝑠,𝑥,𝑘

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21011 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1538 . . . . . 6 class 𝑓
43cdm 5589 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑤
65cv 1538 . . . . . 6 class 𝑤
7 cbs 16912 . . . . . 6 class Base
86, 7cfv 6433 . . . . 5 class (Base‘𝑤)
94, 8, 3wf 6429 . . . 4 wff 𝑓:dom 𝑓⟶(Base‘𝑤)
10 vk . . . . . . . . . . 11 setvar 𝑘
1110cv 1538 . . . . . . . . . 10 class 𝑘
12 vx . . . . . . . . . . . 12 setvar 𝑥
1312cv 1538 . . . . . . . . . . 11 class 𝑥
1413, 3cfv 6433 . . . . . . . . . 10 class (𝑓𝑥)
15 cvsca 16966 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6433 . . . . . . . . . 10 class ( ·𝑠𝑤)
1711, 14, 16co 7275 . . . . . . . . 9 class (𝑘( ·𝑠𝑤)(𝑓𝑥))
1813csn 4561 . . . . . . . . . . . 12 class {𝑥}
194, 18cdif 3884 . . . . . . . . . . 11 class (dom 𝑓 ∖ {𝑥})
203, 19cima 5592 . . . . . . . . . 10 class (𝑓 “ (dom 𝑓 ∖ {𝑥}))
21 clspn 20233 . . . . . . . . . . 11 class LSpan
226, 21cfv 6433 . . . . . . . . . 10 class (LSpan‘𝑤)
2320, 22cfv 6433 . . . . . . . . 9 class ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2417, 23wcel 2106 . . . . . . . 8 wff (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2524wn 3 . . . . . . 7 wff ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1538 . . . . . . . . 9 class 𝑠
2827, 7cfv 6433 . . . . . . . 8 class (Base‘𝑠)
29 c0g 17150 . . . . . . . . . 10 class 0g
3027, 29cfv 6433 . . . . . . . . 9 class (0g𝑠)
3130csn 4561 . . . . . . . 8 class {(0g𝑠)}
3228, 31cdif 3884 . . . . . . 7 class ((Base‘𝑠) ∖ {(0g𝑠)})
3325, 10, 32wral 3064 . . . . . 6 wff 𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
3433, 12, 4wral 3064 . . . . 5 wff 𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
35 csca 16965 . . . . . 6 class Scalar
366, 35cfv 6433 . . . . 5 class (Scalar‘𝑤)
3734, 26, 36wsbc 3716 . . . 4 wff [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
389, 37wa 396 . . 3 wff (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
3938, 2, 5copab 5136 . 2 class {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
401, 39wceq 1539 1 wff LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21015  islindf  21019
  Copyright terms: Public domain W3C validator