MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21580
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21600, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21612) and only one representation for each element of the range (islindf5 21613). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Distinct variable group:   𝑀,𝑓,𝑠,π‘₯,π‘˜

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21578 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1538 . . . . . 6 class 𝑓
43cdm 5675 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑀
65cv 1538 . . . . . 6 class 𝑀
7 cbs 17148 . . . . . 6 class Base
86, 7cfv 6542 . . . . 5 class (Baseβ€˜π‘€)
94, 8, 3wf 6538 . . . 4 wff 𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€)
10 vk . . . . . . . . . . 11 setvar π‘˜
1110cv 1538 . . . . . . . . . 10 class π‘˜
12 vx . . . . . . . . . . . 12 setvar π‘₯
1312cv 1538 . . . . . . . . . . 11 class π‘₯
1413, 3cfv 6542 . . . . . . . . . 10 class (π‘“β€˜π‘₯)
15 cvsca 17205 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6542 . . . . . . . . . 10 class ( ·𝑠 β€˜π‘€)
1711, 14, 16co 7411 . . . . . . . . 9 class (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯))
1813csn 4627 . . . . . . . . . . . 12 class {π‘₯}
194, 18cdif 3944 . . . . . . . . . . 11 class (dom 𝑓 βˆ– {π‘₯})
203, 19cima 5678 . . . . . . . . . 10 class (𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))
21 clspn 20726 . . . . . . . . . . 11 class LSpan
226, 21cfv 6542 . . . . . . . . . 10 class (LSpanβ€˜π‘€)
2320, 22cfv 6542 . . . . . . . . 9 class ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2417, 23wcel 2104 . . . . . . . 8 wff (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2524wn 3 . . . . . . 7 wff Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1538 . . . . . . . . 9 class 𝑠
2827, 7cfv 6542 . . . . . . . 8 class (Baseβ€˜π‘ )
29 c0g 17389 . . . . . . . . . 10 class 0g
3027, 29cfv 6542 . . . . . . . . 9 class (0gβ€˜π‘ )
3130csn 4627 . . . . . . . 8 class {(0gβ€˜π‘ )}
3228, 31cdif 3944 . . . . . . 7 class ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )})
3325, 10, 32wral 3059 . . . . . 6 wff βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
3433, 12, 4wral 3059 . . . . 5 wff βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
35 csca 17204 . . . . . 6 class Scalar
366, 35cfv 6542 . . . . 5 class (Scalarβ€˜π‘€)
3734, 26, 36wsbc 3776 . . . 4 wff [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
389, 37wa 394 . . 3 wff (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))
3938, 2, 5copab 5209 . 2 class {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
401, 39wceq 1539 1 wff LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21582  islindf  21586
  Copyright terms: Public domain W3C validator