MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21361
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21381, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21393) and only one representation for each element of the range (islindf5 21394). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Distinct variable group:   𝑀,𝑓,𝑠,π‘₯,π‘˜

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21359 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1541 . . . . . 6 class 𝑓
43cdm 5677 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑀
65cv 1541 . . . . . 6 class 𝑀
7 cbs 17144 . . . . . 6 class Base
86, 7cfv 6544 . . . . 5 class (Baseβ€˜π‘€)
94, 8, 3wf 6540 . . . 4 wff 𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€)
10 vk . . . . . . . . . . 11 setvar π‘˜
1110cv 1541 . . . . . . . . . 10 class π‘˜
12 vx . . . . . . . . . . . 12 setvar π‘₯
1312cv 1541 . . . . . . . . . . 11 class π‘₯
1413, 3cfv 6544 . . . . . . . . . 10 class (π‘“β€˜π‘₯)
15 cvsca 17201 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6544 . . . . . . . . . 10 class ( ·𝑠 β€˜π‘€)
1711, 14, 16co 7409 . . . . . . . . 9 class (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯))
1813csn 4629 . . . . . . . . . . . 12 class {π‘₯}
194, 18cdif 3946 . . . . . . . . . . 11 class (dom 𝑓 βˆ– {π‘₯})
203, 19cima 5680 . . . . . . . . . 10 class (𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))
21 clspn 20582 . . . . . . . . . . 11 class LSpan
226, 21cfv 6544 . . . . . . . . . 10 class (LSpanβ€˜π‘€)
2320, 22cfv 6544 . . . . . . . . 9 class ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2417, 23wcel 2107 . . . . . . . 8 wff (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
2524wn 3 . . . . . . 7 wff Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1541 . . . . . . . . 9 class 𝑠
2827, 7cfv 6544 . . . . . . . 8 class (Baseβ€˜π‘ )
29 c0g 17385 . . . . . . . . . 10 class 0g
3027, 29cfv 6544 . . . . . . . . 9 class (0gβ€˜π‘ )
3130csn 4629 . . . . . . . 8 class {(0gβ€˜π‘ )}
3228, 31cdif 3946 . . . . . . 7 class ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )})
3325, 10, 32wral 3062 . . . . . 6 wff βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
3433, 12, 4wral 3062 . . . . 5 wff βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
35 csca 17200 . . . . . 6 class Scalar
366, 35cfv 6544 . . . . 5 class (Scalarβ€˜π‘€)
3734, 26, 36wsbc 3778 . . . 4 wff [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯})))
389, 37wa 397 . . 3 wff (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))
3938, 2, 5copab 5211 . 2 class {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
401, 39wceq 1542 1 wff LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21363  islindf  21367
  Copyright terms: Public domain W3C validator