MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21011
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21031, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21043) and only one representation for each element of the range (islindf5 21044). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Distinct variable group:   𝑤,𝑓,𝑠,𝑥,𝑘

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21009 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1541 . . . . . 6 class 𝑓
43cdm 5590 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑤
65cv 1541 . . . . . 6 class 𝑤
7 cbs 16910 . . . . . 6 class Base
86, 7cfv 6432 . . . . 5 class (Base‘𝑤)
94, 8, 3wf 6428 . . . 4 wff 𝑓:dom 𝑓⟶(Base‘𝑤)
10 vk . . . . . . . . . . 11 setvar 𝑘
1110cv 1541 . . . . . . . . . 10 class 𝑘
12 vx . . . . . . . . . . . 12 setvar 𝑥
1312cv 1541 . . . . . . . . . . 11 class 𝑥
1413, 3cfv 6432 . . . . . . . . . 10 class (𝑓𝑥)
15 cvsca 16964 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6432 . . . . . . . . . 10 class ( ·𝑠𝑤)
1711, 14, 16co 7271 . . . . . . . . 9 class (𝑘( ·𝑠𝑤)(𝑓𝑥))
1813csn 4567 . . . . . . . . . . . 12 class {𝑥}
194, 18cdif 3889 . . . . . . . . . . 11 class (dom 𝑓 ∖ {𝑥})
203, 19cima 5593 . . . . . . . . . 10 class (𝑓 “ (dom 𝑓 ∖ {𝑥}))
21 clspn 20231 . . . . . . . . . . 11 class LSpan
226, 21cfv 6432 . . . . . . . . . 10 class (LSpan‘𝑤)
2320, 22cfv 6432 . . . . . . . . 9 class ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2417, 23wcel 2110 . . . . . . . 8 wff (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2524wn 3 . . . . . . 7 wff ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1541 . . . . . . . . 9 class 𝑠
2827, 7cfv 6432 . . . . . . . 8 class (Base‘𝑠)
29 c0g 17148 . . . . . . . . . 10 class 0g
3027, 29cfv 6432 . . . . . . . . 9 class (0g𝑠)
3130csn 4567 . . . . . . . 8 class {(0g𝑠)}
3228, 31cdif 3889 . . . . . . 7 class ((Base‘𝑠) ∖ {(0g𝑠)})
3325, 10, 32wral 3066 . . . . . 6 wff 𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
3433, 12, 4wral 3066 . . . . 5 wff 𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
35 csca 16963 . . . . . 6 class Scalar
366, 35cfv 6432 . . . . 5 class (Scalar‘𝑤)
3734, 26, 36wsbc 3720 . . . 4 wff [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
389, 37wa 396 . . 3 wff (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
3938, 2, 5copab 5141 . 2 class {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
401, 39wceq 1542 1 wff LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21013  islindf  21017
  Copyright terms: Public domain W3C validator