Step | Hyp | Ref
| Expression |
1 | | clindf 21350 |
. 2
class
LIndF |
2 | | vf |
. . . . . . 7
setvar π |
3 | 2 | cv 1540 |
. . . . . 6
class π |
4 | 3 | cdm 5675 |
. . . . 5
class dom π |
5 | | vw |
. . . . . . 7
setvar π€ |
6 | 5 | cv 1540 |
. . . . . 6
class π€ |
7 | | cbs 17140 |
. . . . . 6
class
Base |
8 | 6, 7 | cfv 6540 |
. . . . 5
class
(Baseβπ€) |
9 | 4, 8, 3 | wf 6536 |
. . . 4
wff π:dom πβΆ(Baseβπ€) |
10 | | vk |
. . . . . . . . . . 11
setvar π |
11 | 10 | cv 1540 |
. . . . . . . . . 10
class π |
12 | | vx |
. . . . . . . . . . . 12
setvar π₯ |
13 | 12 | cv 1540 |
. . . . . . . . . . 11
class π₯ |
14 | 13, 3 | cfv 6540 |
. . . . . . . . . 10
class (πβπ₯) |
15 | | cvsca 17197 |
. . . . . . . . . . 11
class
Β·π |
16 | 6, 15 | cfv 6540 |
. . . . . . . . . 10
class (
Β·π βπ€) |
17 | 11, 14, 16 | co 7405 |
. . . . . . . . 9
class (π(
Β·π βπ€)(πβπ₯)) |
18 | 13 | csn 4627 |
. . . . . . . . . . . 12
class {π₯} |
19 | 4, 18 | cdif 3944 |
. . . . . . . . . . 11
class (dom
π β {π₯}) |
20 | 3, 19 | cima 5678 |
. . . . . . . . . 10
class (π β (dom π β {π₯})) |
21 | | clspn 20574 |
. . . . . . . . . . 11
class
LSpan |
22 | 6, 21 | cfv 6540 |
. . . . . . . . . 10
class
(LSpanβπ€) |
23 | 20, 22 | cfv 6540 |
. . . . . . . . 9
class
((LSpanβπ€)β(π β (dom π β {π₯}))) |
24 | 17, 23 | wcel 2106 |
. . . . . . . 8
wff (π(
Β·π βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))) |
25 | 24 | wn 3 |
. . . . . . 7
wff Β¬
(π(
Β·π βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))) |
26 | | vs |
. . . . . . . . . 10
setvar π |
27 | 26 | cv 1540 |
. . . . . . . . 9
class π |
28 | 27, 7 | cfv 6540 |
. . . . . . . 8
class
(Baseβπ ) |
29 | | c0g 17381 |
. . . . . . . . . 10
class
0g |
30 | 27, 29 | cfv 6540 |
. . . . . . . . 9
class
(0gβπ ) |
31 | 30 | csn 4627 |
. . . . . . . 8
class
{(0gβπ )} |
32 | 28, 31 | cdif 3944 |
. . . . . . 7
class
((Baseβπ )
β {(0gβπ )}) |
33 | 25, 10, 32 | wral 3061 |
. . . . . 6
wff
βπ β
((Baseβπ ) β
{(0gβπ )})
Β¬ (π(
Β·π βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))) |
34 | 33, 12, 4 | wral 3061 |
. . . . 5
wff
βπ₯ β dom
πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))) |
35 | | csca 17196 |
. . . . . 6
class
Scalar |
36 | 6, 35 | cfv 6540 |
. . . . 5
class
(Scalarβπ€) |
37 | 34, 26, 36 | wsbc 3776 |
. . . 4
wff
[(Scalarβπ€) / π ]βπ₯ β dom πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))) |
38 | 9, 37 | wa 396 |
. . 3
wff (π:dom πβΆ(Baseβπ€) β§ [(Scalarβπ€) / π ]βπ₯ β dom πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯})))) |
39 | 38, 2, 5 | copab 5209 |
. 2
class
{β¨π, π€β© β£ (π:dom πβΆ(Baseβπ€) β§ [(Scalarβπ€) / π ]βπ₯ β dom πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))))} |
40 | 1, 39 | wceq 1541 |
1
wff LIndF =
{β¨π, π€β© β£ (π:dom πβΆ(Baseβπ€) β§ [(Scalarβπ€) / π ]βπ₯ β dom πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))))} |