MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 21843
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 21863, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21875) and only one representation for each element of the range (islindf5 21876). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Distinct variable group:   𝑤,𝑓,𝑠,𝑥,𝑘

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 21841 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1535 . . . . . 6 class 𝑓
43cdm 5688 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑤
65cv 1535 . . . . . 6 class 𝑤
7 cbs 17244 . . . . . 6 class Base
86, 7cfv 6562 . . . . 5 class (Base‘𝑤)
94, 8, 3wf 6558 . . . 4 wff 𝑓:dom 𝑓⟶(Base‘𝑤)
10 vk . . . . . . . . . . 11 setvar 𝑘
1110cv 1535 . . . . . . . . . 10 class 𝑘
12 vx . . . . . . . . . . . 12 setvar 𝑥
1312cv 1535 . . . . . . . . . . 11 class 𝑥
1413, 3cfv 6562 . . . . . . . . . 10 class (𝑓𝑥)
15 cvsca 17301 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6562 . . . . . . . . . 10 class ( ·𝑠𝑤)
1711, 14, 16co 7430 . . . . . . . . 9 class (𝑘( ·𝑠𝑤)(𝑓𝑥))
1813csn 4630 . . . . . . . . . . . 12 class {𝑥}
194, 18cdif 3959 . . . . . . . . . . 11 class (dom 𝑓 ∖ {𝑥})
203, 19cima 5691 . . . . . . . . . 10 class (𝑓 “ (dom 𝑓 ∖ {𝑥}))
21 clspn 20986 . . . . . . . . . . 11 class LSpan
226, 21cfv 6562 . . . . . . . . . 10 class (LSpan‘𝑤)
2320, 22cfv 6562 . . . . . . . . 9 class ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2417, 23wcel 2105 . . . . . . . 8 wff (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2524wn 3 . . . . . . 7 wff ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1535 . . . . . . . . 9 class 𝑠
2827, 7cfv 6562 . . . . . . . 8 class (Base‘𝑠)
29 c0g 17485 . . . . . . . . . 10 class 0g
3027, 29cfv 6562 . . . . . . . . 9 class (0g𝑠)
3130csn 4630 . . . . . . . 8 class {(0g𝑠)}
3228, 31cdif 3959 . . . . . . 7 class ((Base‘𝑠) ∖ {(0g𝑠)})
3325, 10, 32wral 3058 . . . . . 6 wff 𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
3433, 12, 4wral 3058 . . . . 5 wff 𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
35 csca 17300 . . . . . 6 class Scalar
366, 35cfv 6562 . . . . 5 class (Scalar‘𝑤)
3734, 26, 36wsbc 3790 . . . 4 wff [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
389, 37wa 395 . . 3 wff (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
3938, 2, 5copab 5209 . 2 class {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
401, 39wceq 1536 1 wff LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  21845  islindf  21849
  Copyright terms: Public domain W3C validator