MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 20768
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 20788, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 20800) and only one representation for each element of the range (islindf5 20801). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Distinct variable group:   𝑤,𝑓,𝑠,𝑥,𝑘

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 20766 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1542 . . . . . 6 class 𝑓
43cdm 5551 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑤
65cv 1542 . . . . . 6 class 𝑤
7 cbs 16760 . . . . . 6 class Base
86, 7cfv 6380 . . . . 5 class (Base‘𝑤)
94, 8, 3wf 6376 . . . 4 wff 𝑓:dom 𝑓⟶(Base‘𝑤)
10 vk . . . . . . . . . . 11 setvar 𝑘
1110cv 1542 . . . . . . . . . 10 class 𝑘
12 vx . . . . . . . . . . . 12 setvar 𝑥
1312cv 1542 . . . . . . . . . . 11 class 𝑥
1413, 3cfv 6380 . . . . . . . . . 10 class (𝑓𝑥)
15 cvsca 16806 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 6380 . . . . . . . . . 10 class ( ·𝑠𝑤)
1711, 14, 16co 7213 . . . . . . . . 9 class (𝑘( ·𝑠𝑤)(𝑓𝑥))
1813csn 4541 . . . . . . . . . . . 12 class {𝑥}
194, 18cdif 3863 . . . . . . . . . . 11 class (dom 𝑓 ∖ {𝑥})
203, 19cima 5554 . . . . . . . . . 10 class (𝑓 “ (dom 𝑓 ∖ {𝑥}))
21 clspn 20008 . . . . . . . . . . 11 class LSpan
226, 21cfv 6380 . . . . . . . . . 10 class (LSpan‘𝑤)
2320, 22cfv 6380 . . . . . . . . 9 class ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2417, 23wcel 2110 . . . . . . . 8 wff (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2524wn 3 . . . . . . 7 wff ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1542 . . . . . . . . 9 class 𝑠
2827, 7cfv 6380 . . . . . . . 8 class (Base‘𝑠)
29 c0g 16944 . . . . . . . . . 10 class 0g
3027, 29cfv 6380 . . . . . . . . 9 class (0g𝑠)
3130csn 4541 . . . . . . . 8 class {(0g𝑠)}
3228, 31cdif 3863 . . . . . . 7 class ((Base‘𝑠) ∖ {(0g𝑠)})
3325, 10, 32wral 3061 . . . . . 6 wff 𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
3433, 12, 4wral 3061 . . . . 5 wff 𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
35 csca 16805 . . . . . 6 class Scalar
366, 35cfv 6380 . . . . 5 class (Scalar‘𝑤)
3734, 26, 36wsbc 3694 . . . 4 wff [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
389, 37wa 399 . . 3 wff (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
3938, 2, 5copab 5115 . 2 class {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
401, 39wceq 1543 1 wff LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  20770  islindf  20774
  Copyright terms: Public domain W3C validator