Detailed syntax breakdown of Definition df-lly
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | 1 | clly 22523 |
. 2
class Locally
𝐴 |
3 | | vy |
. . . . . . . 8
setvar 𝑦 |
4 | | vu |
. . . . . . . 8
setvar 𝑢 |
5 | 3, 4 | wel 2109 |
. . . . . . 7
wff 𝑦 ∈ 𝑢 |
6 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑗 |
8 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑢 |
9 | | crest 17048 |
. . . . . . . . 9
class
↾t |
10 | 7, 8, 9 | co 7255 |
. . . . . . . 8
class (𝑗 ↾t 𝑢) |
11 | 10, 1 | wcel 2108 |
. . . . . . 7
wff (𝑗 ↾t 𝑢) ∈ 𝐴 |
12 | 5, 11 | wa 395 |
. . . . . 6
wff (𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) |
13 | | vx |
. . . . . . . . 9
setvar 𝑥 |
14 | 13 | cv 1538 |
. . . . . . . 8
class 𝑥 |
15 | 14 | cpw 4530 |
. . . . . . 7
class 𝒫
𝑥 |
16 | 7, 15 | cin 3882 |
. . . . . 6
class (𝑗 ∩ 𝒫 𝑥) |
17 | 12, 4, 16 | wrex 3064 |
. . . . 5
wff
∃𝑢 ∈
(𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) |
18 | 17, 3, 14 | wral 3063 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) |
19 | 18, 13, 7 | wral 3063 |
. . 3
wff
∀𝑥 ∈
𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) |
20 | | ctop 21950 |
. . 3
class
Top |
21 | 19, 6, 20 | crab 3067 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} |
22 | 2, 21 | wceq 1539 |
1
wff Locally
𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} |