MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islly Structured version   Visualization version   GIF version

Theorem islly 23381
Description: The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
islly (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐽,𝑥,𝑦

Proof of Theorem islly
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ineq1 4163 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥))
2 oveq1 7353 . . . . . . 7 (𝑗 = 𝐽 → (𝑗t 𝑢) = (𝐽t 𝑢))
32eleq1d 2816 . . . . . 6 (𝑗 = 𝐽 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝐽t 𝑢) ∈ 𝐴))
43anbi2d 630 . . . . 5 (𝑗 = 𝐽 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
51, 4rexeqbidv 3313 . . . 4 (𝑗 = 𝐽 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
65ralbidv 3155 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∀𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
76raleqbi1dv 3304 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
8 df-lly 23379 . 2 Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)}
97, 8elrab2 3650 1 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3901  𝒫 cpw 4550  (class class class)co 7346  t crest 17321  Topctop 22806  Locally clly 23377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-lly 23379
This theorem is referenced by:  llytop  23385  llyi  23387  llyss  23392  subislly  23394  restnlly  23395  restlly  23396  islly2  23397  llyrest  23398  llyidm  23401  dislly  23410  txlly  23549  ismntop  34034  cnllysconn  35277  rellysconn  35283
  Copyright terms: Public domain W3C validator