| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islly | Structured version Visualization version GIF version | ||
| Description: The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| islly | ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4179 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥)) | |
| 2 | oveq1 7397 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑢) = (𝐽 ↾t 𝑢)) | |
| 3 | 2 | eleq1d 2814 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑢) ∈ 𝐴 ↔ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 4 | 3 | anbi2d 630 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 5 | 1, 4 | rexeqbidv 3322 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 6 | 5 | ralbidv 3157 | . . 3 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 7 | 6 | raleqbi1dv 3313 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 8 | df-lly 23360 | . 2 ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | |
| 9 | 7, 8 | elrab2 3665 | 1 ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3916 𝒫 cpw 4566 (class class class)co 7390 ↾t crest 17390 Topctop 22787 Locally clly 23358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-lly 23360 |
| This theorem is referenced by: llytop 23366 llyi 23368 llyss 23373 subislly 23375 restnlly 23376 restlly 23377 islly2 23378 llyrest 23379 llyidm 23382 dislly 23391 txlly 23530 ismntop 34023 cnllysconn 35239 rellysconn 35245 |
| Copyright terms: Public domain | W3C validator |