| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nlly | Structured version Visualization version GIF version | ||
| Description: Define a space that is
n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-nlly | ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cnlly 23375 | . 2 class 𝑛-Locally 𝐴 |
| 3 | vj | . . . . . . . . 9 setvar 𝑗 | |
| 4 | 3 | cv 1540 | . . . . . . . 8 class 𝑗 |
| 5 | vu | . . . . . . . . 9 setvar 𝑢 | |
| 6 | 5 | cv 1540 | . . . . . . . 8 class 𝑢 |
| 7 | crest 17319 | . . . . . . . 8 class ↾t | |
| 8 | 4, 6, 7 | co 7341 | . . . . . . 7 class (𝑗 ↾t 𝑢) |
| 9 | 8, 1 | wcel 2111 | . . . . . 6 wff (𝑗 ↾t 𝑢) ∈ 𝐴 |
| 10 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 11 | 10 | cv 1540 | . . . . . . . . 9 class 𝑦 |
| 12 | 11 | csn 4571 | . . . . . . . 8 class {𝑦} |
| 13 | cnei 23007 | . . . . . . . . 9 class nei | |
| 14 | 4, 13 | cfv 6476 | . . . . . . . 8 class (nei‘𝑗) |
| 15 | 12, 14 | cfv 6476 | . . . . . . 7 class ((nei‘𝑗)‘{𝑦}) |
| 16 | vx | . . . . . . . . 9 setvar 𝑥 | |
| 17 | 16 | cv 1540 | . . . . . . . 8 class 𝑥 |
| 18 | 17 | cpw 4545 | . . . . . . 7 class 𝒫 𝑥 |
| 19 | 15, 18 | cin 3896 | . . . . . 6 class (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) |
| 20 | 9, 5, 19 | wrex 3056 | . . . . 5 wff ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 21 | 20, 10, 17 | wral 3047 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 22 | 21, 16, 4 | wral 3047 | . . 3 wff ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 23 | ctop 22803 | . . 3 class Top | |
| 24 | 22, 3, 23 | crab 3395 | . 2 class {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| 25 | 2, 24 | wceq 1541 | 1 wff 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isnlly 23379 nllyeq 23381 |
| Copyright terms: Public domain | W3C validator |