MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nlly Structured version   Visualization version   GIF version

Definition df-nlly 23402
Description: Define a space that is n-locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is n-locally 𝐴 if every neighborhood of a point contains a subneighborhood that is 𝐴 in the subspace topology.

The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.)

Assertion
Ref Expression
df-nlly 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
Distinct variable group:   𝑢,𝑗,𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-nlly
StepHypRef Expression
1 cA . . 3 class 𝐴
21cnlly 23400 . 2 class 𝑛-Locally 𝐴
3 vj . . . . . . . . 9 setvar 𝑗
43cv 1540 . . . . . . . 8 class 𝑗
5 vu . . . . . . . . 9 setvar 𝑢
65cv 1540 . . . . . . . 8 class 𝑢
7 crest 17331 . . . . . . . 8 class t
84, 6, 7co 7355 . . . . . . 7 class (𝑗t 𝑢)
98, 1wcel 2113 . . . . . 6 wff (𝑗t 𝑢) ∈ 𝐴
10 vy . . . . . . . . . 10 setvar 𝑦
1110cv 1540 . . . . . . . . 9 class 𝑦
1211csn 4577 . . . . . . . 8 class {𝑦}
13 cnei 23032 . . . . . . . . 9 class nei
144, 13cfv 6489 . . . . . . . 8 class (nei‘𝑗)
1512, 14cfv 6489 . . . . . . 7 class ((nei‘𝑗)‘{𝑦})
16 vx . . . . . . . . 9 setvar 𝑥
1716cv 1540 . . . . . . . 8 class 𝑥
1817cpw 4551 . . . . . . 7 class 𝒫 𝑥
1915, 18cin 3897 . . . . . 6 class (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)
209, 5, 19wrex 3057 . . . . 5 wff 𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
2120, 10, 17wral 3048 . . . 4 wff 𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
2221, 16, 4wral 3048 . . 3 wff 𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
23 ctop 22828 . . 3 class Top
2422, 3, 23crab 3396 . 2 class {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
252, 24wceq 1541 1 wff 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
Colors of variables: wff setvar class
This definition is referenced by:  isnlly  23404  nllyeq  23406
  Copyright terms: Public domain W3C validator