| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nlly | Structured version Visualization version GIF version | ||
| Description: Define a space that is
n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-nlly | ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cnlly 23403 | . 2 class 𝑛-Locally 𝐴 |
| 3 | vj | . . . . . . . . 9 setvar 𝑗 | |
| 4 | 3 | cv 1539 | . . . . . . . 8 class 𝑗 |
| 5 | vu | . . . . . . . . 9 setvar 𝑢 | |
| 6 | 5 | cv 1539 | . . . . . . . 8 class 𝑢 |
| 7 | crest 17434 | . . . . . . . 8 class ↾t | |
| 8 | 4, 6, 7 | co 7405 | . . . . . . 7 class (𝑗 ↾t 𝑢) |
| 9 | 8, 1 | wcel 2108 | . . . . . 6 wff (𝑗 ↾t 𝑢) ∈ 𝐴 |
| 10 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 11 | 10 | cv 1539 | . . . . . . . . 9 class 𝑦 |
| 12 | 11 | csn 4601 | . . . . . . . 8 class {𝑦} |
| 13 | cnei 23035 | . . . . . . . . 9 class nei | |
| 14 | 4, 13 | cfv 6531 | . . . . . . . 8 class (nei‘𝑗) |
| 15 | 12, 14 | cfv 6531 | . . . . . . 7 class ((nei‘𝑗)‘{𝑦}) |
| 16 | vx | . . . . . . . . 9 setvar 𝑥 | |
| 17 | 16 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 18 | 17 | cpw 4575 | . . . . . . 7 class 𝒫 𝑥 |
| 19 | 15, 18 | cin 3925 | . . . . . 6 class (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) |
| 20 | 9, 5, 19 | wrex 3060 | . . . . 5 wff ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 21 | 20, 10, 17 | wral 3051 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 22 | 21, 16, 4 | wral 3051 | . . 3 wff ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
| 23 | ctop 22831 | . . 3 class Top | |
| 24 | 22, 3, 23 | crab 3415 | . 2 class {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| 25 | 2, 24 | wceq 1540 | 1 wff 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isnlly 23407 nllyeq 23409 |
| Copyright terms: Public domain | W3C validator |