![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nlly | Structured version Visualization version GIF version |
Description: Define a space that is
n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a sub-neighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
df-nlly | ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | cnlly 21638 | . 2 class 𝑛-Locally 𝐴 |
3 | vj | . . . . . . . . 9 setvar 𝑗 | |
4 | 3 | cv 1657 | . . . . . . . 8 class 𝑗 |
5 | vu | . . . . . . . . 9 setvar 𝑢 | |
6 | 5 | cv 1657 | . . . . . . . 8 class 𝑢 |
7 | crest 16433 | . . . . . . . 8 class ↾t | |
8 | 4, 6, 7 | co 6904 | . . . . . . 7 class (𝑗 ↾t 𝑢) |
9 | 8, 1 | wcel 2166 | . . . . . 6 wff (𝑗 ↾t 𝑢) ∈ 𝐴 |
10 | vy | . . . . . . . . . 10 setvar 𝑦 | |
11 | 10 | cv 1657 | . . . . . . . . 9 class 𝑦 |
12 | 11 | csn 4396 | . . . . . . . 8 class {𝑦} |
13 | cnei 21271 | . . . . . . . . 9 class nei | |
14 | 4, 13 | cfv 6122 | . . . . . . . 8 class (nei‘𝑗) |
15 | 12, 14 | cfv 6122 | . . . . . . 7 class ((nei‘𝑗)‘{𝑦}) |
16 | vx | . . . . . . . . 9 setvar 𝑥 | |
17 | 16 | cv 1657 | . . . . . . . 8 class 𝑥 |
18 | 17 | cpw 4377 | . . . . . . 7 class 𝒫 𝑥 |
19 | 15, 18 | cin 3796 | . . . . . 6 class (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) |
20 | 9, 5, 19 | wrex 3117 | . . . . 5 wff ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
21 | 20, 10, 17 | wral 3116 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
22 | 21, 16, 4 | wral 3116 | . . 3 wff ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 |
23 | ctop 21067 | . . 3 class Top | |
24 | 22, 3, 23 | crab 3120 | . 2 class {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
25 | 2, 24 | wceq 1658 | 1 wff 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: isnlly 21642 nllyeq 21644 |
Copyright terms: Public domain | W3C validator |