MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nlly Structured version   Visualization version   GIF version

Definition df-nlly 23354
Description: Define a space that is n-locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is n-locally 𝐴 if every neighborhood of a point contains a subneighborhood that is 𝐴 in the subspace topology.

The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.)

Assertion
Ref Expression
df-nlly 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
Distinct variable group:   𝑢,𝑗,𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-nlly
StepHypRef Expression
1 cA . . 3 class 𝐴
21cnlly 23352 . 2 class 𝑛-Locally 𝐴
3 vj . . . . . . . . 9 setvar 𝑗
43cv 1539 . . . . . . . 8 class 𝑗
5 vu . . . . . . . . 9 setvar 𝑢
65cv 1539 . . . . . . . 8 class 𝑢
7 crest 17383 . . . . . . . 8 class t
84, 6, 7co 7387 . . . . . . 7 class (𝑗t 𝑢)
98, 1wcel 2109 . . . . . 6 wff (𝑗t 𝑢) ∈ 𝐴
10 vy . . . . . . . . . 10 setvar 𝑦
1110cv 1539 . . . . . . . . 9 class 𝑦
1211csn 4589 . . . . . . . 8 class {𝑦}
13 cnei 22984 . . . . . . . . 9 class nei
144, 13cfv 6511 . . . . . . . 8 class (nei‘𝑗)
1512, 14cfv 6511 . . . . . . 7 class ((nei‘𝑗)‘{𝑦})
16 vx . . . . . . . . 9 setvar 𝑥
1716cv 1539 . . . . . . . 8 class 𝑥
1817cpw 4563 . . . . . . 7 class 𝒫 𝑥
1915, 18cin 3913 . . . . . 6 class (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)
209, 5, 19wrex 3053 . . . . 5 wff 𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
2120, 10, 17wral 3044 . . . 4 wff 𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
2221, 16, 4wral 3044 . . 3 wff 𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴
23 ctop 22780 . . 3 class Top
2422, 3, 23crab 3405 . 2 class {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
252, 24wceq 1540 1 wff 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
Colors of variables: wff setvar class
This definition is referenced by:  isnlly  23356  nllyeq  23358
  Copyright terms: Public domain W3C validator