MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyeq Structured version   Visualization version   GIF version

Theorem llyeq 22621
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyeq (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵)

Proof of Theorem llyeq
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . . . 6 (𝐴 = 𝐵 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑢) ∈ 𝐵))
21anbi2d 629 . . . . 5 (𝐴 = 𝐵 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
32rexbidv 3226 . . . 4 (𝐴 = 𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
432ralbidv 3129 . . 3 (𝐴 = 𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
54rabbidv 3414 . 2 (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)} = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)})
6 df-lly 22617 . 2 Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)}
7 df-lly 22617 . 2 Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)}
85, 6, 73eqtr4g 2803 1 (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cin 3886  𝒫 cpw 4533  (class class class)co 7275  t crest 17131  Topctop 22042  Locally clly 22615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-lly 22617
This theorem is referenced by:  ismntoplly  31975
  Copyright terms: Public domain W3C validator