![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > llyeq | Structured version Visualization version GIF version |
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
llyeq | ⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 ↔ (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
2 | 1 | anbi2d 629 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ (𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
3 | 2 | rexbidv 3185 | . . . 4 ⊢ (𝐴 = 𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
4 | 3 | 2ralbidv 3227 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) ↔ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
5 | 4 | rabbidv 3451 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵)}) |
6 | df-lly 23497 | . 2 ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | |
7 | df-lly 23497 | . 2 ⊢ Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵)} | |
8 | 5, 6, 7 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 ∩ cin 3975 𝒫 cpw 4622 (class class class)co 7450 ↾t crest 17482 Topctop 22922 Locally clly 23495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-lly 23497 |
This theorem is referenced by: ismntoplly 33973 |
Copyright terms: Public domain | W3C validator |