MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyeq Structured version   Visualization version   GIF version

Theorem llyeq 22704
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyeq (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵)

Proof of Theorem llyeq
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2826 . . . . . 6 (𝐴 = 𝐵 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑢) ∈ 𝐵))
21anbi2d 629 . . . . 5 (𝐴 = 𝐵 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
32rexbidv 3172 . . . 4 (𝐴 = 𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
432ralbidv 3209 . . 3 (𝐴 = 𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
54rabbidv 3412 . 2 (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)} = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)})
6 df-lly 22700 . 2 Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)}
7 df-lly 22700 . 2 Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)}
85, 6, 73eqtr4g 2802 1 (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071  {crab 3404  cin 3896  𝒫 cpw 4545  (class class class)co 7317  t crest 17208  Topctop 22125  Locally clly 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-lly 22700
This theorem is referenced by:  ismntoplly  32115
  Copyright terms: Public domain W3C validator