Detailed syntax breakdown of Definition df-lmi
| Step | Hyp | Ref
| Expression |
| 1 | | clmi 28781 |
. 2
class
lInvG |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vm |
. . . 4
setvar 𝑚 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑔 |
| 6 | | clng 28442 |
. . . . . 6
class
LineG |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(LineG‘𝑔) |
| 8 | 7 | crn 5686 |
. . . 4
class ran
(LineG‘𝑔) |
| 9 | | va |
. . . . 5
setvar 𝑎 |
| 10 | | cbs 17247 |
. . . . . 6
class
Base |
| 11 | 5, 10 | cfv 6561 |
. . . . 5
class
(Base‘𝑔) |
| 12 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑎 |
| 13 | | vb |
. . . . . . . . . 10
setvar 𝑏 |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑏 |
| 15 | | cmid 28780 |
. . . . . . . . . 10
class
midG |
| 16 | 5, 15 | cfv 6561 |
. . . . . . . . 9
class
(midG‘𝑔) |
| 17 | 12, 14, 16 | co 7431 |
. . . . . . . 8
class (𝑎(midG‘𝑔)𝑏) |
| 18 | 4 | cv 1539 |
. . . . . . . 8
class 𝑚 |
| 19 | 17, 18 | wcel 2108 |
. . . . . . 7
wff (𝑎(midG‘𝑔)𝑏) ∈ 𝑚 |
| 20 | 12, 14, 7 | co 7431 |
. . . . . . . . 9
class (𝑎(LineG‘𝑔)𝑏) |
| 21 | | cperpg 28703 |
. . . . . . . . . 10
class
⟂G |
| 22 | 5, 21 | cfv 6561 |
. . . . . . . . 9
class
(⟂G‘𝑔) |
| 23 | 18, 20, 22 | wbr 5143 |
. . . . . . . 8
wff 𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) |
| 24 | 9, 13 | weq 1962 |
. . . . . . . 8
wff 𝑎 = 𝑏 |
| 25 | 23, 24 | wo 848 |
. . . . . . 7
wff (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) |
| 26 | 19, 25 | wa 395 |
. . . . . 6
wff ((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) |
| 27 | 26, 13, 11 | crio 7387 |
. . . . 5
class
(℩𝑏
∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) |
| 28 | 9, 11, 27 | cmpt 5225 |
. . . 4
class (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) |
| 29 | 4, 8, 28 | cmpt 5225 |
. . 3
class (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) |
| 30 | 2, 3, 29 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) |
| 31 | 1, 30 | wceq 1540 |
1
wff lInvG =
(𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) |