Step | Hyp | Ref
| Expression |
1 | | lmif.m |
. . 3
⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
2 | | df-lmi 27040 |
. . . . 5
⊢ lInvG =
(𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) |
3 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺)) |
4 | | lmif.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
5 | 3, 4 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿) |
6 | 5 | rneqd 5836 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿) |
7 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
8 | | ismid.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
10 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺)) |
11 | 10 | oveqd 7272 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏)) |
12 | 11 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑)) |
13 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → 𝑑 = 𝑑) |
14 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺)) |
15 | 5 | oveqd 7272 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏)) |
16 | 13, 14, 15 | breq123d 5084 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏))) |
17 | 16 | orbi1d 913 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) |
18 | 12, 17 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) |
19 | 9, 18 | riotaeqbidv 7215 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) |
20 | 9, 19 | mpteq12dv 5161 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) |
21 | 6, 20 | mpteq12dv 5161 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))) |
22 | | ismid.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
23 | 22 | elexd 3442 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
24 | 4 | fvexi 6770 |
. . . . . . 7
⊢ 𝐿 ∈ V |
25 | | rnexg 7725 |
. . . . . . 7
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) |
26 | | mptexg 7079 |
. . . . . . 7
⊢ (ran
𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V) |
27 | 24, 25, 26 | mp2b 10 |
. . . . . 6
⊢ (𝑑 ∈ ran 𝐿 ↦ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V |
28 | 27 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V) |
29 | 2, 21, 23, 28 | fvmptd3 6880 |
. . . 4
⊢ (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))) |
30 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷)) |
31 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏))) |
32 | 31 | orbi1d 913 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) |
33 | 30, 32 | anbi12d 630 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) |
34 | 33 | riotabidv 7214 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) |
35 | 34 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑑 = 𝐷 → (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) |
36 | 35 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 = 𝐷) → (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) |
37 | | lmif.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
38 | 8 | fvexi 6770 |
. . . . . 6
⊢ 𝑃 ∈ V |
39 | 38 | mptex 7081 |
. . . . 5
⊢ (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V |
40 | 39 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V) |
41 | 29, 36, 37, 40 | fvmptd 6864 |
. . 3
⊢ (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) |
42 | 1, 41 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝑀 = (𝑎 ∈ 𝑃 ↦ (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) |
43 | | ismid.d |
. . . 4
⊢ − =
(dist‘𝐺) |
44 | | ismid.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
45 | 22 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
46 | | ismid.1 |
. . . . 5
⊢ (𝜑 → 𝐺DimTarskiG≥2) |
47 | 46 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐺DimTarskiG≥2) |
48 | 37 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐷 ∈ ran 𝐿) |
49 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) |
50 | 8, 43, 44, 45, 47, 4, 48, 49 | lmieu 27049 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ∃!𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) |
51 | | riotacl 7230 |
. . 3
⊢
(∃!𝑏 ∈
𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) → (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) ∈ 𝑃) |
52 | 50, 51 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (℩𝑏 ∈ 𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) ∈ 𝑃) |
53 | 42, 52 | fmpt3d 6972 |
1
⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |