MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmif Structured version   Visualization version   GIF version

Theorem lmif 28813
Description: Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
lmif (𝜑𝑀:𝑃𝑃)

Proof of Theorem lmif
Dummy variables 𝑎 𝑏 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmif.m . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
2 df-lmi 28803 . . . . 5 lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
3 fveq2 6922 . . . . . . . 8 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 lmif.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
53, 4eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5963 . . . . . 6 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 fveq2 6922 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
8 ismid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
97, 8eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
10 fveq2 6922 . . . . . . . . . . 11 (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺))
1110oveqd 7467 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏))
1211eleq1d 2829 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑))
13 eqidd 2741 . . . . . . . . . . 11 (𝑔 = 𝐺𝑑 = 𝑑)
14 fveq2 6922 . . . . . . . . . . 11 (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺))
155oveqd 7467 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏))
1613, 14, 15breq123d 5180 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏)))
1716orbi1d 915 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
1812, 17anbi12d 631 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
199, 18riotaeqbidv 7409 . . . . . . 7 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
209, 19mpteq12dv 5257 . . . . . 6 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
216, 20mpteq12dv 5257 . . . . 5 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
22 ismid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
2322elexd 3512 . . . . 5 (𝜑𝐺 ∈ V)
244fvexi 6936 . . . . . . 7 𝐿 ∈ V
25 rnexg 7944 . . . . . . 7 (𝐿 ∈ V → ran 𝐿 ∈ V)
26 mptexg 7260 . . . . . . 7 (ran 𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
2724, 25, 26mp2b 10 . . . . . 6 (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V
2827a1i 11 . . . . 5 (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
292, 21, 23, 28fvmptd3 7054 . . . 4 (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
30 eleq2 2833 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷))
31 breq1 5169 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏)))
3231orbi1d 915 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
3330, 32anbi12d 631 . . . . . . 7 (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3433riotabidv 7408 . . . . . 6 (𝑑 = 𝐷 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3534mpteq2dv 5268 . . . . 5 (𝑑 = 𝐷 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
3635adantl 481 . . . 4 ((𝜑𝑑 = 𝐷) → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
37 lmif.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
388fvexi 6936 . . . . . 6 𝑃 ∈ V
3938mptex 7262 . . . . 5 (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V
4039a1i 11 . . . 4 (𝜑 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V)
4129, 36, 37, 40fvmptd 7038 . . 3 (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
421, 41eqtrid 2792 . 2 (𝜑𝑀 = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
43 ismid.d . . . 4 = (dist‘𝐺)
44 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
4522adantr 480 . . . 4 ((𝜑𝑎𝑃) → 𝐺 ∈ TarskiG)
46 ismid.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
4746adantr 480 . . . 4 ((𝜑𝑎𝑃) → 𝐺DimTarskiG≥2)
4837adantr 480 . . . 4 ((𝜑𝑎𝑃) → 𝐷 ∈ ran 𝐿)
49 simpr 484 . . . 4 ((𝜑𝑎𝑃) → 𝑎𝑃)
508, 43, 44, 45, 47, 4, 48, 49lmieu 28812 . . 3 ((𝜑𝑎𝑃) → ∃!𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
51 riotacl 7424 . . 3 (∃!𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) ∈ 𝑃)
5250, 51syl 17 . 2 ((𝜑𝑎𝑃) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) ∈ 𝑃)
5342, 52fmpt3d 7152 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  ∃!wreu 3386  Vcvv 3488   class class class wbr 5166  cmpt 5249  ran crn 5701  wf 6571  cfv 6575  crio 7405  (class class class)co 7450  2c2 12350  Basecbs 17260  distcds 17322  TarskiGcstrkg 28455  DimTarskiGcstrkgld 28459  Itvcitv 28461  LineGclng 28462  ⟂Gcperpg 28723  midGcmid 28800  lInvGclmi 28801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-er 8765  df-map 8888  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714  df-hash 14382  df-word 14565  df-concat 14621  df-s1 14646  df-s2 14899  df-s3 14900  df-trkgc 28476  df-trkgb 28477  df-trkgcb 28478  df-trkgld 28480  df-trkg 28481  df-cgrg 28539  df-leg 28611  df-mir 28681  df-rag 28722  df-perpg 28724  df-mid 28802  df-lmi 28803
This theorem is referenced by:  lmicl  28814  lmif1o  28823
  Copyright terms: Public domain W3C validator