Step | Hyp | Ref
| Expression |
1 | | lmif.m |
. . 3
β’ π = ((lInvGβπΊ)βπ·) |
2 | | df-lmi 28308 |
. . . . 5
β’ lInvG =
(π β V β¦ (π β ran (LineGβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π)))))) |
3 | | fveq2 6891 |
. . . . . . . 8
β’ (π = πΊ β (LineGβπ) = (LineGβπΊ)) |
4 | | lmif.l |
. . . . . . . 8
β’ πΏ = (LineGβπΊ) |
5 | 3, 4 | eqtr4di 2789 |
. . . . . . 7
β’ (π = πΊ β (LineGβπ) = πΏ) |
6 | 5 | rneqd 5937 |
. . . . . 6
β’ (π = πΊ β ran (LineGβπ) = ran πΏ) |
7 | | fveq2 6891 |
. . . . . . . 8
β’ (π = πΊ β (Baseβπ) = (BaseβπΊ)) |
8 | | ismid.p |
. . . . . . . 8
β’ π = (BaseβπΊ) |
9 | 7, 8 | eqtr4di 2789 |
. . . . . . 7
β’ (π = πΊ β (Baseβπ) = π) |
10 | | fveq2 6891 |
. . . . . . . . . . 11
β’ (π = πΊ β (midGβπ) = (midGβπΊ)) |
11 | 10 | oveqd 7429 |
. . . . . . . . . 10
β’ (π = πΊ β (π(midGβπ)π) = (π(midGβπΊ)π)) |
12 | 11 | eleq1d 2817 |
. . . . . . . . 9
β’ (π = πΊ β ((π(midGβπ)π) β π β (π(midGβπΊ)π) β π)) |
13 | | eqidd 2732 |
. . . . . . . . . . 11
β’ (π = πΊ β π = π) |
14 | | fveq2 6891 |
. . . . . . . . . . 11
β’ (π = πΊ β (βGβπ) = (βGβπΊ)) |
15 | 5 | oveqd 7429 |
. . . . . . . . . . 11
β’ (π = πΊ β (π(LineGβπ)π) = (ππΏπ)) |
16 | 13, 14, 15 | breq123d 5162 |
. . . . . . . . . 10
β’ (π = πΊ β (π(βGβπ)(π(LineGβπ)π) β π(βGβπΊ)(ππΏπ))) |
17 | 16 | orbi1d 914 |
. . . . . . . . 9
β’ (π = πΊ β ((π(βGβπ)(π(LineGβπ)π) β¨ π = π) β (π(βGβπΊ)(ππΏπ) β¨ π = π))) |
18 | 12, 17 | anbi12d 630 |
. . . . . . . 8
β’ (π = πΊ β (((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π)) β ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))) |
19 | 9, 18 | riotaeqbidv 7371 |
. . . . . . 7
β’ (π = πΊ β (β©π β (Baseβπ)((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π))) = (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))) |
20 | 9, 19 | mpteq12dv 5239 |
. . . . . 6
β’ (π = πΊ β (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π)))) = (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π))))) |
21 | 6, 20 | mpteq12dv 5239 |
. . . . 5
β’ (π = πΊ β (π β ran (LineGβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π))))) = (π β ran πΏ β¦ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))))) |
22 | | ismid.g |
. . . . . 6
β’ (π β πΊ β TarskiG) |
23 | 22 | elexd 3494 |
. . . . 5
β’ (π β πΊ β V) |
24 | 4 | fvexi 6905 |
. . . . . . 7
β’ πΏ β V |
25 | | rnexg 7899 |
. . . . . . 7
β’ (πΏ β V β ran πΏ β V) |
26 | | mptexg 7225 |
. . . . . . 7
β’ (ran
πΏ β V β (π β ran πΏ β¦ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π))))) β V) |
27 | 24, 25, 26 | mp2b 10 |
. . . . . 6
β’ (π β ran πΏ β¦ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π))))) β V |
28 | 27 | a1i 11 |
. . . . 5
β’ (π β (π β ran πΏ β¦ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π))))) β V) |
29 | 2, 21, 23, 28 | fvmptd3 7021 |
. . . 4
β’ (π β (lInvGβπΊ) = (π β ran πΏ β¦ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))))) |
30 | | eleq2 2821 |
. . . . . . . 8
β’ (π = π· β ((π(midGβπΊ)π) β π β (π(midGβπΊ)π) β π·)) |
31 | | breq1 5151 |
. . . . . . . . 9
β’ (π = π· β (π(βGβπΊ)(ππΏπ) β π·(βGβπΊ)(ππΏπ))) |
32 | 31 | orbi1d 914 |
. . . . . . . 8
β’ (π = π· β ((π(βGβπΊ)(ππΏπ) β¨ π = π) β (π·(βGβπΊ)(ππΏπ) β¨ π = π))) |
33 | 30, 32 | anbi12d 630 |
. . . . . . 7
β’ (π = π· β (((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)) β ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π)))) |
34 | 33 | riotabidv 7370 |
. . . . . 6
β’ (π = π· β (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π))) = (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π)))) |
35 | 34 | mpteq2dv 5250 |
. . . . 5
β’ (π = π· β (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))) = (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))))) |
36 | 35 | adantl 481 |
. . . 4
β’ ((π β§ π = π·) β (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π β§ (π(βGβπΊ)(ππΏπ) β¨ π = π)))) = (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))))) |
37 | | lmif.d |
. . . 4
β’ (π β π· β ran πΏ) |
38 | 8 | fvexi 6905 |
. . . . . 6
β’ π β V |
39 | 38 | mptex 7227 |
. . . . 5
β’ (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π)))) β V |
40 | 39 | a1i 11 |
. . . 4
β’ (π β (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π)))) β V) |
41 | 29, 36, 37, 40 | fvmptd 7005 |
. . 3
β’ (π β ((lInvGβπΊ)βπ·) = (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))))) |
42 | 1, 41 | eqtrid 2783 |
. 2
β’ (π β π = (π β π β¦ (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))))) |
43 | | ismid.d |
. . . 4
β’ β =
(distβπΊ) |
44 | | ismid.i |
. . . 4
β’ πΌ = (ItvβπΊ) |
45 | 22 | adantr 480 |
. . . 4
β’ ((π β§ π β π) β πΊ β TarskiG) |
46 | | ismid.1 |
. . . . 5
β’ (π β πΊDimTarskiGβ₯2) |
47 | 46 | adantr 480 |
. . . 4
β’ ((π β§ π β π) β πΊDimTarskiGβ₯2) |
48 | 37 | adantr 480 |
. . . 4
β’ ((π β§ π β π) β π· β ran πΏ) |
49 | | simpr 484 |
. . . 4
β’ ((π β§ π β π) β π β π) |
50 | 8, 43, 44, 45, 47, 4, 48, 49 | lmieu 28317 |
. . 3
β’ ((π β§ π β π) β β!π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))) |
51 | | riotacl 7386 |
. . 3
β’
(β!π β
π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π)) β (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))) β π) |
52 | 50, 51 | syl 17 |
. 2
β’ ((π β§ π β π) β (β©π β π ((π(midGβπΊ)π) β π· β§ (π·(βGβπΊ)(ππΏπ) β¨ π = π))) β π) |
53 | 42, 52 | fmpt3d 7117 |
1
β’ (π β π:πβΆπ) |