Step | Hyp | Ref
| Expression |
1 | | cmid 28012 |
. 2
class
midG |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | va |
. . . 4
setvar π |
5 | | vb |
. . . 4
setvar π |
6 | 2 | cv 1540 |
. . . . 5
class π |
7 | | cbs 17140 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6540 |
. . . 4
class
(Baseβπ) |
9 | 5 | cv 1540 |
. . . . . 6
class π |
10 | 4 | cv 1540 |
. . . . . . 7
class π |
11 | | vm |
. . . . . . . . 9
setvar π |
12 | 11 | cv 1540 |
. . . . . . . 8
class π |
13 | | cmir 27892 |
. . . . . . . . 9
class
pInvG |
14 | 6, 13 | cfv 6540 |
. . . . . . . 8
class
(pInvGβπ) |
15 | 12, 14 | cfv 6540 |
. . . . . . 7
class
((pInvGβπ)βπ) |
16 | 10, 15 | cfv 6540 |
. . . . . 6
class
(((pInvGβπ)βπ)βπ) |
17 | 9, 16 | wceq 1541 |
. . . . 5
wff π = (((pInvGβπ)βπ)βπ) |
18 | 17, 11, 8 | crio 7360 |
. . . 4
class
(β©π
β (Baseβπ)π = (((pInvGβπ)βπ)βπ)) |
19 | 4, 5, 8, 8, 18 | cmpo 7407 |
. . 3
class (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ))) |
20 | 2, 3, 19 | cmpt 5230 |
. 2
class (π β V β¦ (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ)))) |
21 | 1, 20 | wceq 1541 |
1
wff midG =
(π β V β¦ (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ)))) |