MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mid Structured version   Visualization version   GIF version

Definition df-mid 28014
Description: Define the midpoint operation. Definition 10.1 of [Schwabhauser] p. 88. See ismidb 28018, midbtwn 28019, and midcgr 28020. (Contributed by Thierry Arnoux, 9-Jun-2019.)
Assertion
Ref Expression
df-mid midG = (𝑔 ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘”), 𝑏 ∈ (Baseβ€˜π‘”) ↦ (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž))))
Distinct variable group:   π‘Ž,𝑏,𝑔,π‘š

Detailed syntax breakdown of Definition df-mid
StepHypRef Expression
1 cmid 28012 . 2 class midG
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 va . . . 4 setvar π‘Ž
5 vb . . . 4 setvar 𝑏
62cv 1540 . . . . 5 class 𝑔
7 cbs 17140 . . . . 5 class Base
86, 7cfv 6540 . . . 4 class (Baseβ€˜π‘”)
95cv 1540 . . . . . 6 class 𝑏
104cv 1540 . . . . . . 7 class π‘Ž
11 vm . . . . . . . . 9 setvar π‘š
1211cv 1540 . . . . . . . 8 class π‘š
13 cmir 27892 . . . . . . . . 9 class pInvG
146, 13cfv 6540 . . . . . . . 8 class (pInvGβ€˜π‘”)
1512, 14cfv 6540 . . . . . . 7 class ((pInvGβ€˜π‘”)β€˜π‘š)
1610, 15cfv 6540 . . . . . 6 class (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž)
179, 16wceq 1541 . . . . 5 wff 𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž)
1817, 11, 8crio 7360 . . . 4 class (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž))
194, 5, 8, 8, 18cmpo 7407 . . 3 class (π‘Ž ∈ (Baseβ€˜π‘”), 𝑏 ∈ (Baseβ€˜π‘”) ↦ (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž)))
202, 3, 19cmpt 5230 . 2 class (𝑔 ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘”), 𝑏 ∈ (Baseβ€˜π‘”) ↦ (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž))))
211, 20wceq 1541 1 wff midG = (𝑔 ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘”), 𝑏 ∈ (Baseβ€˜π‘”) ↦ (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž))))
Colors of variables: wff setvar class
This definition is referenced by:  midf  28016  ismidb  28018
  Copyright terms: Public domain W3C validator