| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > midf | Structured version Visualization version GIF version | ||
| Description: Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| midf | ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 5 | ismid.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ TarskiG) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 8 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
| 9 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
| 10 | ismid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺DimTarskiG≥2) |
| 12 | 1, 2, 3, 4, 6, 7, 8, 9, 11 | mideu 28701 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
| 13 | 12 | ralrimivva 3172 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
| 14 | riotacl 7327 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) | |
| 15 | 14 | 2ralimi 3099 | . . . 4 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
| 17 | eqid 2729 | . . . 4 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) | |
| 18 | 17 | fmpo 8010 | . . 3 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
| 19 | 16, 18 | sylib 218 | . 2 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
| 20 | df-mid 28737 | . . . 4 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
| 21 | fveq2 6826 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 22 | 21, 1 | eqtr4di 2782 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
| 23 | fveq2 6826 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
| 24 | 23 | fveq1d 6828 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = ((pInvG‘𝐺)‘𝑚)) |
| 25 | 24 | fveq1d 6828 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
| 26 | 25 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
| 27 | 22, 26 | riotaeqbidv 7313 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
| 28 | 22, 22, 27 | mpoeq123dv 7428 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
| 29 | 5 | elexd 3462 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 30 | 1 | fvexi 6840 | . . . . . 6 ⊢ 𝑃 ∈ V |
| 31 | 30, 30 | mpoex 8021 | . . . . 5 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V) |
| 33 | 20, 28, 29, 32 | fvmptd3 6957 | . . 3 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
| 34 | 33 | feq1d 6638 | . 2 ⊢ (𝜑 → ((midG‘𝐺):(𝑃 × 𝑃)⟶𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃)) |
| 35 | 19, 34 | mpbird 257 | 1 ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3343 Vcvv 3438 class class class wbr 5095 × cxp 5621 ⟶wf 6482 ‘cfv 6486 ℩crio 7309 ∈ cmpo 7355 2c2 12201 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 DimTarskiG≥cstrkgld 28394 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 midGcmid 28735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkgld 28415 df-trkg 28416 df-cgrg 28474 df-leg 28546 df-mir 28616 df-rag 28657 df-perpg 28659 df-mid 28737 |
| This theorem is referenced by: midcl 28740 |
| Copyright terms: Public domain | W3C validator |