![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > midf | Structured version Visualization version GIF version |
Description: Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Ref | Expression |
---|---|
midf | ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2778 | . . . . . 6 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
5 | ismid.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ TarskiG) |
7 | eqid 2778 | . . . . . 6 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
8 | simprl 761 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
9 | simprr 763 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
10 | ismid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
11 | 10 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺DimTarskiG≥2) |
12 | 1, 2, 3, 4, 6, 7, 8, 9, 11 | mideu 26086 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
13 | 12 | ralrimivva 3153 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
14 | riotacl 6897 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) | |
15 | 14 | 2ralimi 3135 | . . . 4 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
17 | eqid 2778 | . . . 4 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) | |
18 | 17 | fmpt2 7517 | . . 3 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
19 | 16, 18 | sylib 210 | . 2 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
20 | df-mid 26122 | . . . 4 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
21 | fveq2 6446 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
22 | 21, 1 | syl6eqr 2832 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
23 | fveq2 6446 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
24 | 23 | fveq1d 6448 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = ((pInvG‘𝐺)‘𝑚)) |
25 | 24 | fveq1d 6448 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
26 | 25 | eqeq2d 2788 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
27 | 22, 26 | riotaeqbidv 6886 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
28 | 22, 22, 27 | mpt2eq123dv 6994 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
29 | elex 3414 | . . . . 5 ⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) | |
30 | 5, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
31 | 1 | fvexi 6460 | . . . . . 6 ⊢ 𝑃 ∈ V |
32 | 31, 31 | mpt2ex 7527 | . . . . 5 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V) |
34 | 20, 28, 30, 33 | fvmptd3 6564 | . . 3 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
35 | 34 | feq1d 6276 | . 2 ⊢ (𝜑 → ((midG‘𝐺):(𝑃 × 𝑃)⟶𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃)) |
36 | 19, 35 | mpbird 249 | 1 ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃!wreu 3092 Vcvv 3398 class class class wbr 4886 × cxp 5353 ⟶wf 6131 ‘cfv 6135 ℩crio 6882 ↦ cmpt2 6924 2c2 11430 Basecbs 16255 distcds 16347 TarskiGcstrkg 25781 DimTarskiG≥cstrkgld 25785 Itvcitv 25787 LineGclng 25788 pInvGcmir 26003 midGcmid 26120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-s2 13999 df-s3 14000 df-trkgc 25799 df-trkgb 25800 df-trkgcb 25801 df-trkgld 25803 df-trkg 25804 df-cgrg 25862 df-leg 25934 df-mir 26004 df-rag 26045 df-perpg 26047 df-mid 26122 |
This theorem is referenced by: midcl 26125 |
Copyright terms: Public domain | W3C validator |