Step | Hyp | Ref
| Expression |
1 | | ismid.p |
. . . . . 6
β’ π = (BaseβπΊ) |
2 | | ismid.d |
. . . . . 6
β’ β =
(distβπΊ) |
3 | | ismid.i |
. . . . . 6
β’ πΌ = (ItvβπΊ) |
4 | | eqid 2737 |
. . . . . 6
β’
(LineGβπΊ) =
(LineGβπΊ) |
5 | | ismid.g |
. . . . . . 7
β’ (π β πΊ β TarskiG) |
6 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ (π β π β§ π β π)) β πΊ β TarskiG) |
7 | | eqid 2737 |
. . . . . 6
β’
(pInvGβπΊ) =
(pInvGβπΊ) |
8 | | simprl 769 |
. . . . . 6
β’ ((π β§ (π β π β§ π β π)) β π β π) |
9 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β π β§ π β π)) β π β π) |
10 | | ismid.1 |
. . . . . . 7
β’ (π β πΊDimTarskiGβ₯2) |
11 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ (π β π β§ π β π)) β πΊDimTarskiGβ₯2) |
12 | 1, 2, 3, 4, 6, 7, 8, 9, 11 | mideu 27509 |
. . . . 5
β’ ((π β§ (π β π β§ π β π)) β β!π β π π = (((pInvGβπΊ)βπ)βπ)) |
13 | 12 | ralrimivva 3195 |
. . . 4
β’ (π β βπ β π βπ β π β!π β π π = (((pInvGβπΊ)βπ)βπ)) |
14 | | riotacl 7325 |
. . . . 5
β’
(β!π β
π π = (((pInvGβπΊ)βπ)βπ) β (β©π β π π = (((pInvGβπΊ)βπ)βπ)) β π) |
15 | 14 | 2ralimi 3124 |
. . . 4
β’
(βπ β
π βπ β π β!π β π π = (((pInvGβπΊ)βπ)βπ) β βπ β π βπ β π (β©π β π π = (((pInvGβπΊ)βπ)βπ)) β π) |
16 | 13, 15 | syl 17 |
. . 3
β’ (π β βπ β π βπ β π (β©π β π π = (((pInvGβπΊ)βπ)βπ)) β π) |
17 | | eqid 2737 |
. . . 4
β’ (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))) = (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))) |
18 | 17 | fmpo 7992 |
. . 3
β’
(βπ β
π βπ β π (β©π β π π = (((pInvGβπΊ)βπ)βπ)) β π β (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))):(π Γ π)βΆπ) |
19 | 16, 18 | sylib 217 |
. 2
β’ (π β (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))):(π Γ π)βΆπ) |
20 | | df-mid 27545 |
. . . 4
β’ midG =
(π β V β¦ (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ)))) |
21 | | fveq2 6839 |
. . . . . 6
β’ (π = πΊ β (Baseβπ) = (BaseβπΊ)) |
22 | 21, 1 | eqtr4di 2795 |
. . . . 5
β’ (π = πΊ β (Baseβπ) = π) |
23 | | fveq2 6839 |
. . . . . . . . 9
β’ (π = πΊ β (pInvGβπ) = (pInvGβπΊ)) |
24 | 23 | fveq1d 6841 |
. . . . . . . 8
β’ (π = πΊ β ((pInvGβπ)βπ) = ((pInvGβπΊ)βπ)) |
25 | 24 | fveq1d 6841 |
. . . . . . 7
β’ (π = πΊ β (((pInvGβπ)βπ)βπ) = (((pInvGβπΊ)βπ)βπ)) |
26 | 25 | eqeq2d 2748 |
. . . . . 6
β’ (π = πΊ β (π = (((pInvGβπ)βπ)βπ) β π = (((pInvGβπΊ)βπ)βπ))) |
27 | 22, 26 | riotaeqbidv 7310 |
. . . . 5
β’ (π = πΊ β (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ)) = (β©π β π π = (((pInvGβπΊ)βπ)βπ))) |
28 | 22, 22, 27 | mpoeq123dv 7426 |
. . . 4
β’ (π = πΊ β (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ))) = (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ)))) |
29 | 5 | elexd 3463 |
. . . 4
β’ (π β πΊ β V) |
30 | 1 | fvexi 6853 |
. . . . . 6
β’ π β V |
31 | 30, 30 | mpoex 8004 |
. . . . 5
β’ (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))) β V |
32 | 31 | a1i 11 |
. . . 4
β’ (π β (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))) β V) |
33 | 20, 28, 29, 32 | fvmptd3 6968 |
. . 3
β’ (π β (midGβπΊ) = (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ)))) |
34 | 33 | feq1d 6650 |
. 2
β’ (π β ((midGβπΊ):(π Γ π)βΆπ β (π β π, π β π β¦ (β©π β π π = (((pInvGβπΊ)βπ)βπ))):(π Γ π)βΆπ)) |
35 | 19, 34 | mpbird 256 |
1
β’ (π β (midGβπΊ):(π Γ π)βΆπ) |