Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > midf | Structured version Visualization version GIF version |
Description: Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Ref | Expression |
---|---|
midf | ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2740 | . . . . . 6 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
5 | ismid.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ TarskiG) |
7 | eqid 2740 | . . . . . 6 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
8 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
9 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
10 | ismid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺DimTarskiG≥2) |
12 | 1, 2, 3, 4, 6, 7, 8, 9, 11 | mideu 27089 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
13 | 12 | ralrimivva 3117 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
14 | riotacl 7244 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) | |
15 | 14 | 2ralimi 3090 | . . . 4 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
17 | eqid 2740 | . . . 4 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) | |
18 | 17 | fmpo 7895 | . . 3 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
19 | 16, 18 | sylib 217 | . 2 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
20 | df-mid 27125 | . . . 4 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
21 | fveq2 6769 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
22 | 21, 1 | eqtr4di 2798 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
23 | fveq2 6769 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
24 | 23 | fveq1d 6771 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = ((pInvG‘𝐺)‘𝑚)) |
25 | 24 | fveq1d 6771 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
26 | 25 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
27 | 22, 26 | riotaeqbidv 7229 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
28 | 22, 22, 27 | mpoeq123dv 7342 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
29 | 5 | elexd 3451 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
30 | 1 | fvexi 6783 | . . . . . 6 ⊢ 𝑃 ∈ V |
31 | 30, 30 | mpoex 7907 | . . . . 5 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V) |
33 | 20, 28, 29, 32 | fvmptd3 6893 | . . 3 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
34 | 33 | feq1d 6582 | . 2 ⊢ (𝜑 → ((midG‘𝐺):(𝑃 × 𝑃)⟶𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃)) |
35 | 19, 34 | mpbird 256 | 1 ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃!wreu 3068 Vcvv 3431 class class class wbr 5079 × cxp 5587 ⟶wf 6427 ‘cfv 6431 ℩crio 7225 ∈ cmpo 7271 2c2 12020 Basecbs 16902 distcds 16961 TarskiGcstrkg 26778 DimTarskiG≥cstrkgld 26782 Itvcitv 26784 LineGclng 26785 pInvGcmir 27003 midGcmid 27123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-oadd 8286 df-er 8473 df-map 8592 df-pm 8593 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-dju 9652 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-n0 12226 df-xnn0 12298 df-z 12312 df-uz 12574 df-fz 13231 df-fzo 13374 df-hash 14035 df-word 14208 df-concat 14264 df-s1 14291 df-s2 14551 df-s3 14552 df-trkgc 26799 df-trkgb 26800 df-trkgcb 26801 df-trkgld 26803 df-trkg 26804 df-cgrg 26862 df-leg 26934 df-mir 27004 df-rag 27045 df-perpg 27047 df-mid 27125 |
This theorem is referenced by: midcl 27128 |
Copyright terms: Public domain | W3C validator |