Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > midf | Structured version Visualization version GIF version |
Description: Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Ref | Expression |
---|---|
midf | ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2738 | . . . . . 6 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
5 | ismid.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ TarskiG) |
7 | eqid 2738 | . . . . . 6 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
8 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
9 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
10 | ismid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺DimTarskiG≥2) |
12 | 1, 2, 3, 4, 6, 7, 8, 9, 11 | mideu 27003 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
13 | 12 | ralrimivva 3114 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
14 | riotacl 7230 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) | |
15 | 14 | 2ralimi 3087 | . . . 4 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃!𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎) → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃) |
17 | eqid 2738 | . . . 4 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) | |
18 | 17 | fmpo 7881 | . . 3 ⊢ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)) ∈ 𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
19 | 16, 18 | sylib 217 | . 2 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃) |
20 | df-mid 27039 | . . . 4 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
21 | fveq2 6756 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
22 | 21, 1 | eqtr4di 2797 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
23 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
24 | 23 | fveq1d 6758 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = ((pInvG‘𝐺)‘𝑚)) |
25 | 24 | fveq1d 6758 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = (((pInvG‘𝐺)‘𝑚)‘𝑎)) |
26 | 25 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
27 | 22, 26 | riotaeqbidv 7215 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) |
28 | 22, 22, 27 | mpoeq123dv 7328 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
29 | 5 | elexd 3442 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
30 | 1 | fvexi 6770 | . . . . . 6 ⊢ 𝑃 ∈ V |
31 | 30, 30 | mpoex 7893 | . . . . 5 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))) ∈ V) |
33 | 20, 28, 29, 32 | fvmptd3 6880 | . . 3 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎)))) |
34 | 33 | feq1d 6569 | . 2 ⊢ (𝜑 → ((midG‘𝐺):(𝑃 × 𝑃)⟶𝑃 ↔ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = (((pInvG‘𝐺)‘𝑚)‘𝑎))):(𝑃 × 𝑃)⟶𝑃)) |
35 | 19, 34 | mpbird 256 | 1 ⊢ (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 Vcvv 3422 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 ℩crio 7211 ∈ cmpo 7257 2c2 11958 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 DimTarskiG≥cstrkgld 26697 Itvcitv 26699 LineGclng 26700 pInvGcmir 26917 midGcmid 27037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkgld 26717 df-trkg 26718 df-cgrg 26776 df-leg 26848 df-mir 26918 df-rag 26959 df-perpg 26961 df-mid 27039 |
This theorem is referenced by: midcl 27042 |
Copyright terms: Public domain | W3C validator |