MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmib Structured version   Visualization version   GIF version

Theorem islmib 28604
Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
islmib.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islmib (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))

Proof of Theorem islmib
Dummy variables 𝑎 𝑏 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmif.m . . . . 5 𝑀 = ((lInvG‘𝐺)‘𝐷)
2 df-lmi 28592 . . . . . . 7 lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
3 fveq2 6897 . . . . . . . . . 10 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 lmif.l . . . . . . . . . 10 𝐿 = (LineG‘𝐺)
53, 4eqtr4di 2786 . . . . . . . . 9 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5940 . . . . . . . 8 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 fveq2 6897 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
8 ismid.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
97, 8eqtr4di 2786 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
10 fveq2 6897 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺))
1110oveqd 7437 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏))
1211eleq1d 2814 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑))
13 eqidd 2729 . . . . . . . . . . . . 13 (𝑔 = 𝐺𝑑 = 𝑑)
14 fveq2 6897 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺))
155oveqd 7437 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏))
1613, 14, 15breq123d 5162 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏)))
1716orbi1d 915 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
1812, 17anbi12d 631 . . . . . . . . . 10 (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
199, 18riotaeqbidv 7379 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
209, 19mpteq12dv 5239 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
216, 20mpteq12dv 5239 . . . . . . 7 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
22 ismid.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
2322elexd 3492 . . . . . . 7 (𝜑𝐺 ∈ V)
244fvexi 6911 . . . . . . . . 9 𝐿 ∈ V
25 rnexg 7910 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
26 mptexg 7233 . . . . . . . . 9 (ran 𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
2724, 25, 26mp2b 10 . . . . . . . 8 (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
292, 21, 23, 28fvmptd3 7028 . . . . . 6 (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
30 eleq2 2818 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷))
31 breq1 5151 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏)))
3231orbi1d 915 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
3330, 32anbi12d 631 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3433riotabidv 7378 . . . . . . . 8 (𝑑 = 𝐷 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3534mpteq2dv 5250 . . . . . . 7 (𝑑 = 𝐷 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
3635adantl 481 . . . . . 6 ((𝜑𝑑 = 𝐷) → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
37 lmif.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
388fvexi 6911 . . . . . . . 8 𝑃 ∈ V
3938mptex 7235 . . . . . . 7 (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V
4039a1i 11 . . . . . 6 (𝜑 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V)
4129, 36, 37, 40fvmptd 7012 . . . . 5 (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
421, 41eqtrid 2780 . . . 4 (𝜑𝑀 = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
43 oveq1 7427 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
4443eleq1d 2814 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷))
45 oveq1 7427 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎𝐿𝑏) = (𝐴𝐿𝑏))
4645breq2d 5160 . . . . . . . 8 (𝑎 = 𝐴 → (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
47 eqeq1 2732 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 = 𝑏𝐴 = 𝑏))
4846, 47orbi12d 917 . . . . . . 7 (𝑎 = 𝐴 → ((𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
4944, 48anbi12d 631 . . . . . 6 (𝑎 = 𝐴 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5049riotabidv 7378 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5150adantl 481 . . . 4 ((𝜑𝑎 = 𝐴) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
52 lmicl.1 . . . 4 (𝜑𝐴𝑃)
53 ismid.d . . . . . 6 = (dist‘𝐺)
54 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
55 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
568, 53, 54, 22, 55, 4, 37, 52lmieu 28601 . . . . 5 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
57 riotacl 7394 . . . . 5 (∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5856, 57syl 17 . . . 4 (𝜑 → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5942, 51, 52, 58fvmptd 7012 . . 3 (𝜑 → (𝑀𝐴) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
6059eqeq2d 2739 . 2 (𝜑 → (𝐵 = (𝑀𝐴) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
61 islmib.b . . . 4 (𝜑𝐵𝑃)
62 oveq2 7428 . . . . . . 7 (𝑏 = 𝐵 → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐵))
6362eleq1d 2814 . . . . . 6 (𝑏 = 𝐵 → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝐵) ∈ 𝐷))
64 oveq2 7428 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐿𝑏) = (𝐴𝐿𝐵))
6564breq2d 5160 . . . . . . 7 (𝑏 = 𝐵 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)))
66 eqeq2 2740 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 = 𝑏𝐴 = 𝐵))
6765, 66orbi12d 917 . . . . . 6 (𝑏 = 𝐵 → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
6863, 67anbi12d 631 . . . . 5 (𝑏 = 𝐵 → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
6968riota2 7402 . . . 4 ((𝐵𝑃 ∧ ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
7061, 56, 69syl2anc 583 . . 3 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
71 eqcom 2735 . . 3 (𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵)
7270, 71bitr4di 289 . 2 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
7360, 72bitr4d 282 1 (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  ∃!wreu 3371  Vcvv 3471   class class class wbr 5148  cmpt 5231  ran crn 5679  cfv 6548  crio 7375  (class class class)co 7420  2c2 12298  Basecbs 17180  distcds 17242  TarskiGcstrkg 28244  DimTarskiGcstrkgld 28248  Itvcitv 28250  LineGclng 28251  ⟂Gcperpg 28512  midGcmid 28589  lInvGclmi 28590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-concat 14554  df-s1 14579  df-s2 14832  df-s3 14833  df-trkgc 28265  df-trkgb 28266  df-trkgcb 28267  df-trkgld 28269  df-trkg 28270  df-cgrg 28328  df-leg 28400  df-mir 28470  df-rag 28511  df-perpg 28513  df-mid 28591  df-lmi 28592
This theorem is referenced by:  lmicom  28605  lmiinv  28609  lmimid  28611  lmiisolem  28613  hypcgrlem1  28616  hypcgrlem2  28617  lmiopp  28619  trgcopyeulem  28622
  Copyright terms: Public domain W3C validator