Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmib Structured version   Visualization version   GIF version

Theorem islmib 26584
 Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
islmib.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islmib (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))

Proof of Theorem islmib
Dummy variables 𝑎 𝑏 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmif.m . . . . 5 𝑀 = ((lInvG‘𝐺)‘𝐷)
2 df-lmi 26572 . . . . . . 7 lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
3 fveq2 6661 . . . . . . . . . 10 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 lmif.l . . . . . . . . . 10 𝐿 = (LineG‘𝐺)
53, 4syl6eqr 2877 . . . . . . . . 9 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5795 . . . . . . . 8 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 fveq2 6661 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
8 ismid.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
97, 8syl6eqr 2877 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
10 fveq2 6661 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺))
1110oveqd 7166 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏))
1211eleq1d 2900 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑))
13 eqidd 2825 . . . . . . . . . . . . 13 (𝑔 = 𝐺𝑑 = 𝑑)
14 fveq2 6661 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺))
155oveqd 7166 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏))
1613, 14, 15breq123d 5066 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏)))
1716orbi1d 914 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
1812, 17anbi12d 633 . . . . . . . . . 10 (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
199, 18riotaeqbidv 7110 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
209, 19mpteq12dv 5137 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
216, 20mpteq12dv 5137 . . . . . . 7 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
22 ismid.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
2322elexd 3500 . . . . . . 7 (𝜑𝐺 ∈ V)
244fvexi 6675 . . . . . . . . 9 𝐿 ∈ V
25 rnexg 7609 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
26 mptexg 6975 . . . . . . . . 9 (ran 𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
2724, 25, 26mp2b 10 . . . . . . . 8 (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
292, 21, 23, 28fvmptd3 6782 . . . . . 6 (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
30 eleq2 2904 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷))
31 breq1 5055 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏)))
3231orbi1d 914 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
3330, 32anbi12d 633 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3433riotabidv 7109 . . . . . . . 8 (𝑑 = 𝐷 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3534mpteq2dv 5148 . . . . . . 7 (𝑑 = 𝐷 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
3635adantl 485 . . . . . 6 ((𝜑𝑑 = 𝐷) → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
37 lmif.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
388fvexi 6675 . . . . . . . 8 𝑃 ∈ V
3938mptex 6977 . . . . . . 7 (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V
4039a1i 11 . . . . . 6 (𝜑 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V)
4129, 36, 37, 40fvmptd 6766 . . . . 5 (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
421, 41syl5eq 2871 . . . 4 (𝜑𝑀 = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
43 oveq1 7156 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
4443eleq1d 2900 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷))
45 oveq1 7156 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎𝐿𝑏) = (𝐴𝐿𝑏))
4645breq2d 5064 . . . . . . . 8 (𝑎 = 𝐴 → (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
47 eqeq1 2828 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 = 𝑏𝐴 = 𝑏))
4846, 47orbi12d 916 . . . . . . 7 (𝑎 = 𝐴 → ((𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
4944, 48anbi12d 633 . . . . . 6 (𝑎 = 𝐴 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5049riotabidv 7109 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5150adantl 485 . . . 4 ((𝜑𝑎 = 𝐴) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
52 lmicl.1 . . . 4 (𝜑𝐴𝑃)
53 ismid.d . . . . . 6 = (dist‘𝐺)
54 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
55 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
568, 53, 54, 22, 55, 4, 37, 52lmieu 26581 . . . . 5 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
57 riotacl 7124 . . . . 5 (∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5856, 57syl 17 . . . 4 (𝜑 → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5942, 51, 52, 58fvmptd 6766 . . 3 (𝜑 → (𝑀𝐴) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
6059eqeq2d 2835 . 2 (𝜑 → (𝐵 = (𝑀𝐴) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
61 islmib.b . . . 4 (𝜑𝐵𝑃)
62 oveq2 7157 . . . . . . 7 (𝑏 = 𝐵 → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐵))
6362eleq1d 2900 . . . . . 6 (𝑏 = 𝐵 → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝐵) ∈ 𝐷))
64 oveq2 7157 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐿𝑏) = (𝐴𝐿𝐵))
6564breq2d 5064 . . . . . . 7 (𝑏 = 𝐵 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)))
66 eqeq2 2836 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 = 𝑏𝐴 = 𝐵))
6765, 66orbi12d 916 . . . . . 6 (𝑏 = 𝐵 → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
6863, 67anbi12d 633 . . . . 5 (𝑏 = 𝐵 → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
6968riota2 7132 . . . 4 ((𝐵𝑃 ∧ ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
7061, 56, 69syl2anc 587 . . 3 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
71 eqcom 2831 . . 3 (𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵)
7270, 71syl6bbr 292 . 2 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
7360, 72bitr4d 285 1 (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115  ∃!wreu 3135  Vcvv 3480   class class class wbr 5052   ↦ cmpt 5132  ran crn 5543  ‘cfv 6343  ℩crio 7106  (class class class)co 7149  2c2 11689  Basecbs 16483  distcds 16574  TarskiGcstrkg 26227  DimTarskiG≥cstrkgld 26231  Itvcitv 26233  LineGclng 26234  ⟂Gcperpg 26492  midGcmid 26569  lInvGclmi 26570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26245  df-trkgb 26246  df-trkgcb 26247  df-trkgld 26249  df-trkg 26250  df-cgrg 26308  df-leg 26380  df-mir 26450  df-rag 26491  df-perpg 26493  df-mid 26571  df-lmi 26572 This theorem is referenced by:  lmicom  26585  lmiinv  26589  lmimid  26591  lmiisolem  26593  hypcgrlem1  26596  hypcgrlem2  26597  lmiopp  26599  trgcopyeulem  26602
 Copyright terms: Public domain W3C validator