MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmib Structured version   Visualization version   GIF version

Theorem islmib 25916
Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
islmib.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islmib (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))

Proof of Theorem islmib
Dummy variables 𝑎 𝑏 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmif.m . . . . 5 𝑀 = ((lInvG‘𝐺)‘𝐷)
2 df-lmi 25904 . . . . . . . 8 lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
32a1i 11 . . . . . . 7 (𝜑 → lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))))
4 fveq2 6418 . . . . . . . . . . 11 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
5 lmif.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
64, 5syl6eqr 2869 . . . . . . . . . 10 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
76rneqd 5568 . . . . . . . . 9 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
8 fveq2 6418 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
9 ismid.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
108, 9syl6eqr 2869 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
11 fveq2 6418 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺))
1211oveqd 6901 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏))
1312eleq1d 2881 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑))
14 eqidd 2818 . . . . . . . . . . . . . 14 (𝑔 = 𝐺𝑑 = 𝑑)
15 fveq2 6418 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺))
166oveqd 6901 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏))
1714, 15, 16breq123d 4869 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏)))
1817orbi1d 931 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
1913, 18anbi12d 618 . . . . . . . . . . 11 (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
2010, 19riotaeqbidv 6848 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
2110, 20mpteq12dv 4938 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
227, 21mpteq12dv 4938 . . . . . . . 8 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
2322adantl 469 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
24 ismid.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
25 elex 3417 . . . . . . . 8 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
2624, 25syl 17 . . . . . . 7 (𝜑𝐺 ∈ V)
275fvexi 6432 . . . . . . . . 9 𝐿 ∈ V
28 rnexg 7338 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
29 mptexg 6719 . . . . . . . . 9 (ran 𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
3027, 28, 29mp2b 10 . . . . . . . 8 (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V
3130a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
323, 23, 26, 31fvmptd 6519 . . . . . 6 (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
33 eleq2 2885 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷))
34 breq1 4858 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏)))
3534orbi1d 931 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
3633, 35anbi12d 618 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3736riotabidv 6847 . . . . . . . 8 (𝑑 = 𝐷 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3837mpteq2dv 4950 . . . . . . 7 (𝑑 = 𝐷 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
3938adantl 469 . . . . . 6 ((𝜑𝑑 = 𝐷) → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
40 lmif.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
419fvexi 6432 . . . . . . . 8 𝑃 ∈ V
4241mptex 6721 . . . . . . 7 (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V
4342a1i 11 . . . . . 6 (𝜑 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V)
4432, 39, 40, 43fvmptd 6519 . . . . 5 (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
451, 44syl5eq 2863 . . . 4 (𝜑𝑀 = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
46 oveq1 6891 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
4746eleq1d 2881 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷))
48 oveq1 6891 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎𝐿𝑏) = (𝐴𝐿𝑏))
4948breq2d 4867 . . . . . . . 8 (𝑎 = 𝐴 → (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
50 eqeq1 2821 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 = 𝑏𝐴 = 𝑏))
5149, 50orbi12d 933 . . . . . . 7 (𝑎 = 𝐴 → ((𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
5247, 51anbi12d 618 . . . . . 6 (𝑎 = 𝐴 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5352riotabidv 6847 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5453adantl 469 . . . 4 ((𝜑𝑎 = 𝐴) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
55 lmicl.1 . . . 4 (𝜑𝐴𝑃)
56 ismid.d . . . . . 6 = (dist‘𝐺)
57 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
58 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
599, 56, 57, 24, 58, 5, 40, 55lmieu 25913 . . . . 5 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
60 riotacl 6859 . . . . 5 (∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
6159, 60syl 17 . . . 4 (𝜑 → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
6245, 54, 55, 61fvmptd 6519 . . 3 (𝜑 → (𝑀𝐴) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
6362eqeq2d 2827 . 2 (𝜑 → (𝐵 = (𝑀𝐴) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
64 islmib.b . . . 4 (𝜑𝐵𝑃)
65 oveq2 6892 . . . . . . 7 (𝑏 = 𝐵 → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐵))
6665eleq1d 2881 . . . . . 6 (𝑏 = 𝐵 → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝐵) ∈ 𝐷))
67 oveq2 6892 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐿𝑏) = (𝐴𝐿𝐵))
6867breq2d 4867 . . . . . . 7 (𝑏 = 𝐵 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)))
69 eqeq2 2828 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 = 𝑏𝐴 = 𝐵))
7068, 69orbi12d 933 . . . . . 6 (𝑏 = 𝐵 → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
7166, 70anbi12d 618 . . . . 5 (𝑏 = 𝐵 → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
7271riota2 6867 . . . 4 ((𝐵𝑃 ∧ ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
7364, 59, 72syl2anc 575 . . 3 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
74 eqcom 2824 . . 3 (𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵)
7573, 74syl6bbr 280 . 2 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
7663, 75bitr4d 273 1 (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2157  ∃!wreu 3109  Vcvv 3402   class class class wbr 4855  cmpt 4934  ran crn 5325  cfv 6111  crio 6844  (class class class)co 6884  2c2 11368  Basecbs 16088  distcds 16182  TarskiGcstrkg 25566  DimTarskiGcstrkgld 25570  Itvcitv 25572  LineGclng 25573  ⟂Gcperpg 25827  midGcmid 25901  lInvGclmi 25902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-1st 7408  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-map 8104  df-pm 8105  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-card 9058  df-cda 9285  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-3 11377  df-n0 11580  df-xnn0 11650  df-z 11664  df-uz 11925  df-fz 12570  df-fzo 12710  df-hash 13358  df-word 13530  df-concat 13532  df-s1 13533  df-s2 13837  df-s3 13838  df-trkgc 25584  df-trkgb 25585  df-trkgcb 25586  df-trkgld 25588  df-trkg 25589  df-cgrg 25643  df-leg 25715  df-mir 25785  df-rag 25826  df-perpg 25828  df-mid 25903  df-lmi 25904
This theorem is referenced by:  lmicom  25917  lmiinv  25921  lmimid  25923  lmiisolem  25925  hypcgrlem1  25928  hypcgrlem2  25929  lmiopp  25931  trgcopyeulem  25934
  Copyright terms: Public domain W3C validator