MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmib Structured version   Visualization version   GIF version

Theorem islmib 27729
Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
islmib.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islmib (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))

Proof of Theorem islmib
Dummy variables 𝑎 𝑏 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmif.m . . . . 5 𝑀 = ((lInvG‘𝐺)‘𝐷)
2 df-lmi 27717 . . . . . . 7 lInvG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
3 fveq2 6842 . . . . . . . . . 10 (𝑔 = 𝐺 → (LineG‘𝑔) = (LineG‘𝐺))
4 lmif.l . . . . . . . . . 10 𝐿 = (LineG‘𝐺)
53, 4eqtr4di 2794 . . . . . . . . 9 (𝑔 = 𝐺 → (LineG‘𝑔) = 𝐿)
65rneqd 5893 . . . . . . . 8 (𝑔 = 𝐺 → ran (LineG‘𝑔) = ran 𝐿)
7 fveq2 6842 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
8 ismid.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
97, 8eqtr4di 2794 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
10 fveq2 6842 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (midG‘𝑔) = (midG‘𝐺))
1110oveqd 7374 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎(midG‘𝑔)𝑏) = (𝑎(midG‘𝐺)𝑏))
1211eleq1d 2822 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝑑))
13 eqidd 2737 . . . . . . . . . . . . 13 (𝑔 = 𝐺𝑑 = 𝑑)
14 fveq2 6842 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (⟂G‘𝑔) = (⟂G‘𝐺))
155oveqd 7374 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑎(LineG‘𝑔)𝑏) = (𝑎𝐿𝑏))
1613, 14, 15breq123d 5119 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ↔ 𝑑(⟂G‘𝐺)(𝑎𝐿𝑏)))
1716orbi1d 915 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
1812, 17anbi12d 631 . . . . . . . . . 10 (𝑔 = 𝐺 → (((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
199, 18riotaeqbidv 7316 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
209, 19mpteq12dv 5196 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
216, 20mpteq12dv 5196 . . . . . . 7 (𝑔 = 𝐺 → (𝑑 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
22 ismid.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
2322elexd 3465 . . . . . . 7 (𝜑𝐺 ∈ V)
244fvexi 6856 . . . . . . . . 9 𝐿 ∈ V
25 rnexg 7841 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
26 mptexg 7171 . . . . . . . . 9 (ran 𝐿 ∈ V → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
2724, 25, 26mp2b 10 . . . . . . . 8 (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))) ∈ V)
292, 21, 23, 28fvmptd3 6971 . . . . . 6 (𝜑 → (lInvG‘𝐺) = (𝑑 ∈ ran 𝐿 ↦ (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))))
30 eleq2 2826 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ↔ (𝑎(midG‘𝐺)𝑏) ∈ 𝐷))
31 breq1 5108 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝑎𝐿𝑏)))
3231orbi1d 915 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))
3330, 32anbi12d 631 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3433riotabidv 7315 . . . . . . . 8 (𝑑 = 𝐷 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))))
3534mpteq2dv 5207 . . . . . . 7 (𝑑 = 𝐷 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
3635adantl 482 . . . . . 6 ((𝜑𝑑 = 𝐷) → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝑑 ∧ (𝑑(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
37 lmif.d . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
388fvexi 6856 . . . . . . . 8 𝑃 ∈ V
3938mptex 7173 . . . . . . 7 (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V
4039a1i 11 . . . . . 6 (𝜑 → (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))) ∈ V)
4129, 36, 37, 40fvmptd 6955 . . . . 5 (𝜑 → ((lInvG‘𝐺)‘𝐷) = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
421, 41eqtrid 2788 . . . 4 (𝜑𝑀 = (𝑎𝑃 ↦ (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)))))
43 oveq1 7364 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
4443eleq1d 2822 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷))
45 oveq1 7364 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎𝐿𝑏) = (𝐴𝐿𝑏))
4645breq2d 5117 . . . . . . . 8 (𝑎 = 𝐴 → (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
47 eqeq1 2740 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 = 𝑏𝐴 = 𝑏))
4846, 47orbi12d 917 . . . . . . 7 (𝑎 = 𝐴 → ((𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
4944, 48anbi12d 631 . . . . . 6 (𝑎 = 𝐴 → (((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5049riotabidv 7315 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
5150adantl 482 . . . 4 ((𝜑𝑎 = 𝐴) → (𝑏𝑃 ((𝑎(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
52 lmicl.1 . . . 4 (𝜑𝐴𝑃)
53 ismid.d . . . . . 6 = (dist‘𝐺)
54 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
55 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
568, 53, 54, 22, 55, 4, 37, 52lmieu 27726 . . . . 5 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
57 riotacl 7331 . . . . 5 (∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5856, 57syl 17 . . . 4 (𝜑 → (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ∈ 𝑃)
5942, 51, 52, 58fvmptd 6955 . . 3 (𝜑 → (𝑀𝐴) = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))))
6059eqeq2d 2747 . 2 (𝜑 → (𝐵 = (𝑀𝐴) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
61 islmib.b . . . 4 (𝜑𝐵𝑃)
62 oveq2 7365 . . . . . . 7 (𝑏 = 𝐵 → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐵))
6362eleq1d 2822 . . . . . 6 (𝑏 = 𝐵 → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ↔ (𝐴(midG‘𝐺)𝐵) ∈ 𝐷))
64 oveq2 7365 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐿𝑏) = (𝐴𝐿𝐵))
6564breq2d 5117 . . . . . . 7 (𝑏 = 𝐵 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ↔ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)))
66 eqeq2 2748 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 = 𝑏𝐴 = 𝐵))
6765, 66orbi12d 917 . . . . . 6 (𝑏 = 𝐵 → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) ↔ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
6863, 67anbi12d 631 . . . . 5 (𝑏 = 𝐵 → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
6968riota2 7339 . . . 4 ((𝐵𝑃 ∧ ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
7061, 56, 69syl2anc 584 . . 3 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵))
71 eqcom 2743 . . 3 (𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) ↔ (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) = 𝐵)
7270, 71bitr4di 288 . 2 (𝜑 → (((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ↔ 𝐵 = (𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))))
7360, 72bitr4d 281 1 (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  ∃!wreu 3351  Vcvv 3445   class class class wbr 5105  cmpt 5188  ran crn 5634  cfv 6496  crio 7312  (class class class)co 7357  2c2 12208  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  DimTarskiGcstrkgld 27373  Itvcitv 27375  LineGclng 27376  ⟂Gcperpg 27637  midGcmid 27714  lInvGclmi 27715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkgld 27394  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-mir 27595  df-rag 27636  df-perpg 27638  df-mid 27716  df-lmi 27717
This theorem is referenced by:  lmicom  27730  lmiinv  27734  lmimid  27736  lmiisolem  27738  hypcgrlem1  27741  hypcgrlem2  27742  lmiopp  27744  trgcopyeulem  27747
  Copyright terms: Public domain W3C validator