HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-lnfn Structured version   Visualization version   GIF version

Definition df-lnfn 30111
Description: Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-lnfn LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
Distinct variable group:   𝑥,𝑡,𝑦,𝑧

Detailed syntax breakdown of Definition df-lnfn
StepHypRef Expression
1 clf 29217 . 2 class LinFn
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1538 . . . . . . . . . 10 class 𝑥
4 vy . . . . . . . . . . 11 setvar 𝑦
54cv 1538 . . . . . . . . . 10 class 𝑦
6 csm 29184 . . . . . . . . . 10 class ·
73, 5, 6co 7255 . . . . . . . . 9 class (𝑥 · 𝑦)
8 vz . . . . . . . . . 10 setvar 𝑧
98cv 1538 . . . . . . . . 9 class 𝑧
10 cva 29183 . . . . . . . . 9 class +
117, 9, 10co 7255 . . . . . . . 8 class ((𝑥 · 𝑦) + 𝑧)
12 vt . . . . . . . . 9 setvar 𝑡
1312cv 1538 . . . . . . . 8 class 𝑡
1411, 13cfv 6418 . . . . . . 7 class (𝑡‘((𝑥 · 𝑦) + 𝑧))
155, 13cfv 6418 . . . . . . . . 9 class (𝑡𝑦)
16 cmul 10807 . . . . . . . . 9 class ·
173, 15, 16co 7255 . . . . . . . 8 class (𝑥 · (𝑡𝑦))
189, 13cfv 6418 . . . . . . . 8 class (𝑡𝑧)
19 caddc 10805 . . . . . . . 8 class +
2017, 18, 19co 7255 . . . . . . 7 class ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))
2114, 20wceq 1539 . . . . . 6 wff (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))
22 chba 29182 . . . . . 6 class
2321, 8, 22wral 3063 . . . . 5 wff 𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))
2423, 4, 22wral 3063 . . . 4 wff 𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))
25 cc 10800 . . . 4 class
2624, 2, 25wral 3063 . . 3 wff 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))
27 cmap 8573 . . . 4 class m
2825, 22, 27co 7255 . . 3 class (ℂ ↑m ℋ)
2926, 12, 28crab 3067 . 2 class {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
301, 29wceq 1539 1 wff LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
Colors of variables: wff setvar class
This definition is referenced by:  ellnfn  30146
  Copyright terms: Public domain W3C validator