Detailed syntax breakdown of Definition df-lnfn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | clf 30974 | . 2
class
LinFn | 
| 2 |  | vx | . . . . . . . . . . 11
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . . . . . . 10
class 𝑥 | 
| 4 |  | vy | . . . . . . . . . . 11
setvar 𝑦 | 
| 5 | 4 | cv 1538 | . . . . . . . . . 10
class 𝑦 | 
| 6 |  | csm 30941 | . . . . . . . . . 10
class 
·ℎ | 
| 7 | 3, 5, 6 | co 7432 | . . . . . . . . 9
class (𝑥
·ℎ 𝑦) | 
| 8 |  | vz | . . . . . . . . . 10
setvar 𝑧 | 
| 9 | 8 | cv 1538 | . . . . . . . . 9
class 𝑧 | 
| 10 |  | cva 30940 | . . . . . . . . 9
class 
+ℎ | 
| 11 | 7, 9, 10 | co 7432 | . . . . . . . 8
class ((𝑥
·ℎ 𝑦) +ℎ 𝑧) | 
| 12 |  | vt | . . . . . . . . 9
setvar 𝑡 | 
| 13 | 12 | cv 1538 | . . . . . . . 8
class 𝑡 | 
| 14 | 11, 13 | cfv 6560 | . . . . . . 7
class (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) | 
| 15 | 5, 13 | cfv 6560 | . . . . . . . . 9
class (𝑡‘𝑦) | 
| 16 |  | cmul 11161 | . . . . . . . . 9
class 
· | 
| 17 | 3, 15, 16 | co 7432 | . . . . . . . 8
class (𝑥 · (𝑡‘𝑦)) | 
| 18 | 9, 13 | cfv 6560 | . . . . . . . 8
class (𝑡‘𝑧) | 
| 19 |  | caddc 11159 | . . . . . . . 8
class 
+ | 
| 20 | 17, 18, 19 | co 7432 | . . . . . . 7
class ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) | 
| 21 | 14, 20 | wceq 1539 | . . . . . 6
wff (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) | 
| 22 |  | chba 30939 | . . . . . 6
class 
ℋ | 
| 23 | 21, 8, 22 | wral 3060 | . . . . 5
wff
∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) | 
| 24 | 23, 4, 22 | wral 3060 | . . . 4
wff
∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) | 
| 25 |  | cc 11154 | . . . 4
class
ℂ | 
| 26 | 24, 2, 25 | wral 3060 | . . 3
wff
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) | 
| 27 |  | cmap 8867 | . . . 4
class 
↑m | 
| 28 | 25, 22, 27 | co 7432 | . . 3
class (ℂ
↑m ℋ) | 
| 29 | 26, 12, 28 | crab 3435 | . 2
class {𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | 
| 30 | 1, 29 | wceq 1539 | 1
wff LinFn =
{𝑡 ∈ (ℂ
↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} |