![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ellnfn | Structured version Visualization version GIF version |
Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ellnfn | ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6905 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) | |
2 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
3 | 2 | oveq2d 7446 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑥 · (𝑡‘𝑦)) = (𝑥 · (𝑇‘𝑦))) |
4 | fveq1 6905 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
5 | 3, 4 | oveq12d 7448 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧))) |
6 | 1, 5 | eqeq12d 2750 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
7 | 6 | ralbidv 3175 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
8 | 7 | 2ralbidv 3218 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
9 | df-lnfn 31876 | . . 3 ⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | |
10 | 8, 9 | elrab2 3697 | . 2 ⊢ (𝑇 ∈ LinFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
11 | cnex 11233 | . . . 4 ⊢ ℂ ∈ V | |
12 | ax-hilex 31027 | . . . 4 ⊢ ℋ ∈ V | |
13 | 11, 12 | elmap 8909 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
14 | 13 | anbi1i 624 | . 2 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧))) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
15 | 10, 14 | bitri 275 | 1 ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 ℂcc 11150 + caddc 11155 · cmul 11157 ℋchba 30947 +ℎ cva 30948 ·ℎ csm 30949 LinFnclf 30982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-hilex 31027 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-lnfn 31876 |
This theorem is referenced by: lnfnf 31912 lnfnl 31959 bralnfn 31976 0lnfn 32013 cnlnadjlem2 32096 |
Copyright terms: Public domain | W3C validator |