| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ellnfn | Structured version Visualization version GIF version | ||
| Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ellnfn | ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) | |
| 2 | fveq1 6839 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
| 3 | 2 | oveq2d 7385 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑥 · (𝑡‘𝑦)) = (𝑥 · (𝑇‘𝑦))) |
| 4 | fveq1 6839 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑧) = (𝑇‘𝑧)) | |
| 5 | 3, 4 | oveq12d 7387 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧))) |
| 6 | 1, 5 | eqeq12d 2745 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 7 | 6 | ralbidv 3156 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 8 | 7 | 2ralbidv 3199 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 9 | df-lnfn 31827 | . . 3 ⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | |
| 10 | 8, 9 | elrab2 3659 | . 2 ⊢ (𝑇 ∈ LinFn ↔ (𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 11 | cnex 11125 | . . . 4 ⊢ ℂ ∈ V | |
| 12 | ax-hilex 30978 | . . . 4 ⊢ ℋ ∈ V | |
| 13 | 11, 12 | elmap 8821 | . . 3 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 14 | 13 | anbi1i 624 | . 2 ⊢ ((𝑇 ∈ (ℂ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧))) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 15 | 10, 14 | bitri 275 | 1 ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℂcc 11042 + caddc 11047 · cmul 11049 ℋchba 30898 +ℎ cva 30899 ·ℎ csm 30900 LinFnclf 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-hilex 30978 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-lnfn 31827 |
| This theorem is referenced by: lnfnf 31863 lnfnl 31910 bralnfn 31927 0lnfn 31964 cnlnadjlem2 32047 |
| Copyright terms: Public domain | W3C validator |