Step | Hyp | Ref
| Expression |
1 | | fveq1 6890 |
. . . . . 6
β’ (π‘ = π β (π‘β((π₯ Β·β π¦) +β π§)) = (πβ((π₯ Β·β π¦) +β π§))) |
2 | | fveq1 6890 |
. . . . . . . 8
β’ (π‘ = π β (π‘βπ¦) = (πβπ¦)) |
3 | 2 | oveq2d 7428 |
. . . . . . 7
β’ (π‘ = π β (π₯ Β· (π‘βπ¦)) = (π₯ Β· (πβπ¦))) |
4 | | fveq1 6890 |
. . . . . . 7
β’ (π‘ = π β (π‘βπ§) = (πβπ§)) |
5 | 3, 4 | oveq12d 7430 |
. . . . . 6
β’ (π‘ = π β ((π₯ Β· (π‘βπ¦)) + (π‘βπ§)) = ((π₯ Β· (πβπ¦)) + (πβπ§))) |
6 | 1, 5 | eqeq12d 2747 |
. . . . 5
β’ (π‘ = π β ((π‘β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (π‘βπ¦)) + (π‘βπ§)) β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |
7 | 6 | ralbidv 3176 |
. . . 4
β’ (π‘ = π β (βπ§ β β (π‘β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (π‘βπ¦)) + (π‘βπ§)) β βπ§ β β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |
8 | 7 | 2ralbidv 3217 |
. . 3
β’ (π‘ = π β (βπ₯ β β βπ¦ β β βπ§ β β (π‘β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (π‘βπ¦)) + (π‘βπ§)) β βπ₯ β β βπ¦ β β βπ§ β β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |
9 | | df-lnfn 31535 |
. . 3
β’ LinFn =
{π‘ β (β
βm β) β£ βπ₯ β β βπ¦ β β βπ§ β β (π‘β((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (π‘βπ¦)) + (π‘βπ§))} |
10 | 8, 9 | elrab2 3686 |
. 2
β’ (π β LinFn β (π β (β
βm β) β§ βπ₯ β β βπ¦ β β βπ§ β β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |
11 | | cnex 11197 |
. . . 4
β’ β
β V |
12 | | ax-hilex 30686 |
. . . 4
β’ β
β V |
13 | 11, 12 | elmap 8871 |
. . 3
β’ (π β (β
βm β) β π: ββΆβ) |
14 | 13 | anbi1i 623 |
. 2
β’ ((π β (β
βm β) β§ βπ₯ β β βπ¦ β β βπ§ β β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§))) β (π: ββΆβ β§ βπ₯ β β βπ¦ β β βπ§ β β (πβ((π₯ Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |
15 | 10, 14 | bitri 275 |
1
β’ (π β LinFn β (π: ββΆβ β§
βπ₯ β β
βπ¦ β β
βπ§ β β
(πβ((π₯
Β·β π¦) +β π§)) = ((π₯ Β· (πβπ¦)) + (πβπ§)))) |