Detailed syntax breakdown of Definition df-adjh
Step | Hyp | Ref
| Expression |
1 | | cado 29317 |
. 2
class
adjℎ |
2 | | chba 29281 |
. . . . 5
class
ℋ |
3 | | vt |
. . . . . 6
setvar 𝑡 |
4 | 3 | cv 1538 |
. . . . 5
class 𝑡 |
5 | 2, 2, 4 | wf 6429 |
. . . 4
wff 𝑡: ℋ⟶
ℋ |
6 | | vu |
. . . . . 6
setvar 𝑢 |
7 | 6 | cv 1538 |
. . . . 5
class 𝑢 |
8 | 2, 2, 7 | wf 6429 |
. . . 4
wff 𝑢: ℋ⟶
ℋ |
9 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
10 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
11 | 10, 4 | cfv 6433 |
. . . . . . . 8
class (𝑡‘𝑥) |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑦 |
14 | | csp 29284 |
. . . . . . . 8
class
·ih |
15 | 11, 13, 14 | co 7275 |
. . . . . . 7
class ((𝑡‘𝑥) ·ih 𝑦) |
16 | 13, 7 | cfv 6433 |
. . . . . . . 8
class (𝑢‘𝑦) |
17 | 10, 16, 14 | co 7275 |
. . . . . . 7
class (𝑥
·ih (𝑢‘𝑦)) |
18 | 15, 17 | wceq 1539 |
. . . . . 6
wff ((𝑡‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)) |
19 | 18, 12, 2 | wral 3064 |
. . . . 5
wff
∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)) |
20 | 19, 9, 2 | wral 3064 |
. . . 4
wff
∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)) |
21 | 5, 8, 20 | w3a 1086 |
. . 3
wff (𝑡: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦))) |
22 | 21, 3, 6 | copab 5136 |
. 2
class
{〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧
𝑢: ℋ⟶ ℋ
∧ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} |
23 | 1, 22 | wceq 1539 |
1
wff
adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} |