Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ltp | Structured version Visualization version GIF version |
Description: Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c 10877, and is intended to be used only by the construction. From Proposition 9-3.2 of [Gleason] p. 122. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-ltp | ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cltp 10619 | . 2 class <P | |
2 | vx | . . . . . . 7 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
4 | cnp 10615 | . . . . . 6 class P | |
5 | 3, 4 | wcel 2106 | . . . . 5 wff 𝑥 ∈ P |
6 | vy | . . . . . . 7 setvar 𝑦 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑦 |
8 | 7, 4 | wcel 2106 | . . . . 5 wff 𝑦 ∈ P |
9 | 5, 8 | wa 396 | . . . 4 wff (𝑥 ∈ P ∧ 𝑦 ∈ P) |
10 | 3, 7 | wpss 3888 | . . . 4 wff 𝑥 ⊊ 𝑦 |
11 | 9, 10 | wa 396 | . . 3 wff ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) |
12 | 11, 2, 6 | copab 5136 | . 2 class {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} |
13 | 1, 12 | wceq 1539 | 1 wff <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} |
Colors of variables: wff setvar class |
This definition is referenced by: ltrelpr 10754 ltprord 10786 |
Copyright terms: Public domain | W3C validator |