| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npex | Structured version Visualization version GIF version | ||
| Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| npex | ⊢ P ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 10821 | . . 3 ⊢ Q ∈ V | |
| 2 | 1 | pwex 5320 | . 2 ⊢ 𝒫 Q ∈ V |
| 3 | pssss 4047 | . . . . 5 ⊢ (𝑥 ⊊ Q → 𝑥 ⊆ Q) | |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧)) → 𝑥 ⊆ Q) |
| 5 | 4 | ss2abi 4015 | . . 3 ⊢ {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥 ∣ 𝑥 ⊆ Q} |
| 6 | df-np 10879 | . . 3 ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | |
| 7 | df-pw 4551 | . . 3 ⊢ 𝒫 Q = {𝑥 ∣ 𝑥 ⊆ Q} | |
| 8 | 5, 6, 7 | 3sstr4i 3982 | . 2 ⊢ P ⊆ 𝒫 Q |
| 9 | 2, 8 | ssexi 5262 | 1 ⊢ P ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 ⊊ wpss 3899 ∅c0 4282 𝒫 cpw 4549 class class class wbr 5093 Qcnq 10750 <Q cltq 10756 Pcnp 10757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7803 df-ni 10770 df-nq 10810 df-np 10879 |
| This theorem is referenced by: nrex1 10962 enrex 10965 |
| Copyright terms: Public domain | W3C validator |