| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npex | Structured version Visualization version GIF version | ||
| Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| npex | ⊢ P ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 10883 | . . 3 ⊢ Q ∈ V | |
| 2 | 1 | pwex 5338 | . 2 ⊢ 𝒫 Q ∈ V |
| 3 | pssss 4064 | . . . . 5 ⊢ (𝑥 ⊊ Q → 𝑥 ⊆ Q) | |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧)) → 𝑥 ⊆ Q) |
| 5 | 4 | ss2abi 4033 | . . 3 ⊢ {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥 ∣ 𝑥 ⊆ Q} |
| 6 | df-np 10941 | . . 3 ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | |
| 7 | df-pw 4568 | . . 3 ⊢ 𝒫 Q = {𝑥 ∣ 𝑥 ⊆ Q} | |
| 8 | 5, 6, 7 | 3sstr4i 4001 | . 2 ⊢ P ⊆ 𝒫 Q |
| 9 | 2, 8 | ssexi 5280 | 1 ⊢ P ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 ⊊ wpss 3918 ∅c0 4299 𝒫 cpw 4566 class class class wbr 5110 Qcnq 10812 <Q cltq 10818 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-ni 10832 df-nq 10872 df-np 10941 |
| This theorem is referenced by: nrex1 11024 enrex 11027 |
| Copyright terms: Public domain | W3C validator |