MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npex Structured version   Visualization version   GIF version

Theorem npex 10726
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
npex P ∈ V

Proof of Theorem npex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqex 10663 . . 3 Q ∈ V
21pwex 5306 . 2 𝒫 Q ∈ V
3 pssss 4034 . . . . 5 (𝑥Q𝑥Q)
43ad2antlr 723 . . . 4 (((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧)) → 𝑥Q)
54ss2abi 4004 . . 3 {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥𝑥Q}
6 df-np 10721 . . 3 P = {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))}
7 df-pw 4540 . . 3 𝒫 Q = {𝑥𝑥Q}
85, 6, 73sstr4i 3968 . 2 P ⊆ 𝒫 Q
92, 8ssexi 5249 1 P ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2109  {cab 2716  wral 3065  wrex 3066  Vcvv 3430  wss 3891  wpss 3892  c0 4261  𝒫 cpw 4538   class class class wbr 5078  Qcnq 10592   <Q cltq 10598  Pcnp 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-om 7701  df-ni 10612  df-nq 10652  df-np 10721
This theorem is referenced by:  nrex1  10804  enrex  10807
  Copyright terms: Public domain W3C validator