![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npex | Structured version Visualization version GIF version |
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npex | ⊢ P ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 10866 | . . 3 ⊢ Q ∈ V | |
2 | 1 | pwex 5340 | . 2 ⊢ 𝒫 Q ∈ V |
3 | pssss 4060 | . . . . 5 ⊢ (𝑥 ⊊ Q → 𝑥 ⊆ Q) | |
4 | 3 | ad2antlr 726 | . . . 4 ⊢ (((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧)) → 𝑥 ⊆ Q) |
5 | 4 | ss2abi 4028 | . . 3 ⊢ {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥 ∣ 𝑥 ⊆ Q} |
6 | df-np 10924 | . . 3 ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | |
7 | df-pw 4567 | . . 3 ⊢ 𝒫 Q = {𝑥 ∣ 𝑥 ⊆ Q} | |
8 | 5, 6, 7 | 3sstr4i 3992 | . 2 ⊢ P ⊆ 𝒫 Q |
9 | 2, 8 | ssexi 5284 | 1 ⊢ P ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2714 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ⊆ wss 3915 ⊊ wpss 3916 ∅c0 4287 𝒫 cpw 4565 class class class wbr 5110 Qcnq 10795 <Q cltq 10801 Pcnp 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-om 7808 df-ni 10815 df-nq 10855 df-np 10924 |
This theorem is referenced by: nrex1 11007 enrex 11010 |
Copyright terms: Public domain | W3C validator |