Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npex | Structured version Visualization version GIF version |
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npex | ⊢ P ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 10663 | . . 3 ⊢ Q ∈ V | |
2 | 1 | pwex 5306 | . 2 ⊢ 𝒫 Q ∈ V |
3 | pssss 4034 | . . . . 5 ⊢ (𝑥 ⊊ Q → 𝑥 ⊆ Q) | |
4 | 3 | ad2antlr 723 | . . . 4 ⊢ (((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧)) → 𝑥 ⊆ Q) |
5 | 4 | ss2abi 4004 | . . 3 ⊢ {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥 ∣ 𝑥 ⊆ Q} |
6 | df-np 10721 | . . 3 ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | |
7 | df-pw 4540 | . . 3 ⊢ 𝒫 Q = {𝑥 ∣ 𝑥 ⊆ Q} | |
8 | 5, 6, 7 | 3sstr4i 3968 | . 2 ⊢ P ⊆ 𝒫 Q |
9 | 2, 8 | ssexi 5249 | 1 ⊢ P ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 ⊊ wpss 3892 ∅c0 4261 𝒫 cpw 4538 class class class wbr 5078 Qcnq 10592 <Q cltq 10598 Pcnp 10599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-om 7701 df-ni 10612 df-nq 10652 df-np 10721 |
This theorem is referenced by: nrex1 10804 enrex 10807 |
Copyright terms: Public domain | W3C validator |