MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npex Structured version   Visualization version   GIF version

Theorem npex 10884
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
npex P ∈ V

Proof of Theorem npex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqex 10821 . . 3 Q ∈ V
21pwex 5320 . 2 𝒫 Q ∈ V
3 pssss 4047 . . . . 5 (𝑥Q𝑥Q)
43ad2antlr 727 . . . 4 (((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧)) → 𝑥Q)
54ss2abi 4015 . . 3 {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥𝑥Q}
6 df-np 10879 . . 3 P = {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))}
7 df-pw 4551 . . 3 𝒫 Q = {𝑥𝑥Q}
85, 6, 73sstr4i 3982 . 2 P ⊆ 𝒫 Q
92, 8ssexi 5262 1 P ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  wss 3898  wpss 3899  c0 4282  𝒫 cpw 4549   class class class wbr 5093  Qcnq 10750   <Q cltq 10756  Pcnp 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-om 7803  df-ni 10770  df-nq 10810  df-np 10879
This theorem is referenced by:  nrex1  10962  enrex  10965
  Copyright terms: Public domain W3C validator