| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npex | Structured version Visualization version GIF version | ||
| Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| npex | ⊢ P ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 10942 | . . 3 ⊢ Q ∈ V | |
| 2 | 1 | pwex 5355 | . 2 ⊢ 𝒫 Q ∈ V |
| 3 | pssss 4078 | . . . . 5 ⊢ (𝑥 ⊊ Q → 𝑥 ⊆ Q) | |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧)) → 𝑥 ⊆ Q) |
| 5 | 4 | ss2abi 4047 | . . 3 ⊢ {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} ⊆ {𝑥 ∣ 𝑥 ⊆ Q} |
| 6 | df-np 11000 | . . 3 ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | |
| 7 | df-pw 4582 | . . 3 ⊢ 𝒫 Q = {𝑥 ∣ 𝑥 ⊆ Q} | |
| 8 | 5, 6, 7 | 3sstr4i 4015 | . 2 ⊢ P ⊆ 𝒫 Q |
| 9 | 2, 8 | ssexi 5297 | 1 ⊢ P ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ⊊ wpss 3932 ∅c0 4313 𝒫 cpw 4580 class class class wbr 5124 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-ni 10891 df-nq 10931 df-np 11000 |
| This theorem is referenced by: nrex1 11083 enrex 11086 |
| Copyright terms: Public domain | W3C validator |