![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltp 11023 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
2 | opabssxp 5781 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 ⊊ wpss 3964 {copab 5210 × cxp 5687 Pcnp 10897 <P cltp 10901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ss 3980 df-opab 5211 df-xp 5695 df-ltp 11023 |
This theorem is referenced by: ltexpri 11081 ltaprlem 11082 ltapr 11083 suplem1pr 11090 suplem2pr 11091 supexpr 11092 ltsrpr 11115 ltsosr 11132 mappsrpr 11146 |
Copyright terms: Public domain | W3C validator |