| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltp 11026 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
| 2 | opabssxp 5777 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 4029 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 ⊊ wpss 3951 {copab 5204 × cxp 5682 Pcnp 10900 <P cltp 10904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-ss 3967 df-opab 5205 df-xp 5690 df-ltp 11026 |
| This theorem is referenced by: ltexpri 11084 ltaprlem 11085 ltapr 11086 suplem1pr 11093 suplem2pr 11094 supexpr 11095 ltsrpr 11118 ltsosr 11135 mappsrpr 11149 |
| Copyright terms: Public domain | W3C validator |