| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltp 10876 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
| 2 | opabssxp 5706 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 ⊊ wpss 3898 {copab 5151 × cxp 5612 Pcnp 10750 <P cltp 10754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-opab 5152 df-xp 5620 df-ltp 10876 |
| This theorem is referenced by: ltexpri 10934 ltaprlem 10935 ltapr 10936 suplem1pr 10943 suplem2pr 10944 supexpr 10945 ltsrpr 10968 ltsosr 10985 mappsrpr 10999 |
| Copyright terms: Public domain | W3C validator |