![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltp 10096 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
2 | opabssxp 5399 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3832 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∈ wcel 2157 ⊆ wss 3770 ⊊ wpss 3771 {copab 4906 × cxp 5311 Pcnp 9970 <P cltp 9974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-in 3777 df-ss 3784 df-opab 4907 df-xp 5319 df-ltp 10096 |
This theorem is referenced by: ltexpri 10154 ltaprlem 10155 ltapr 10156 suplem1pr 10163 suplem2pr 10164 supexpr 10165 ltsrpr 10187 ltsosr 10204 mappsrpr 10218 |
Copyright terms: Public domain | W3C validator |