MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   GIF version

Theorem ltrelpr 10413
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 10400 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
2 opabssxp 5611 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)} ⊆ (P × P)
31, 2eqsstri 3952 1 <P ⊆ (P × P)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2112  wss 3884  wpss 3885  {copab 5095   × cxp 5521  Pcnp 10274  <P cltp 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-in 3891  df-ss 3901  df-opab 5096  df-xp 5529  df-ltp 10400
This theorem is referenced by:  ltexpri  10458  ltaprlem  10459  ltapr  10460  suplem1pr  10467  suplem2pr  10468  supexpr  10469  ltsrpr  10492  ltsosr  10509  mappsrpr  10523
  Copyright terms: Public domain W3C validator