MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   GIF version

Theorem ltrelpr 10889
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 10876 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
2 opabssxp 5706 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)} ⊆ (P × P)
31, 2eqsstri 3976 1 <P ⊆ (P × P)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  wss 3897  wpss 3898  {copab 5151   × cxp 5612  Pcnp 10750  <P cltp 10754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ss 3914  df-opab 5152  df-xp 5620  df-ltp 10876
This theorem is referenced by:  ltexpri  10934  ltaprlem  10935  ltapr  10936  suplem1pr  10943  suplem2pr  10944  supexpr  10945  ltsrpr  10968  ltsosr  10985  mappsrpr  10999
  Copyright terms: Public domain W3C validator