Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltp 10811 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
2 | opabssxp 5695 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3964 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2105 ⊆ wss 3896 ⊊ wpss 3897 {copab 5147 × cxp 5603 Pcnp 10685 <P cltp 10689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-ss 3913 df-opab 5148 df-xp 5611 df-ltp 10811 |
This theorem is referenced by: ltexpri 10869 ltaprlem 10870 ltapr 10871 suplem1pr 10878 suplem2pr 10879 supexpr 10880 ltsrpr 10903 ltsosr 10920 mappsrpr 10934 |
Copyright terms: Public domain | W3C validator |