![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltp 11054 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
2 | opabssxp 5792 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 ⊊ wpss 3977 {copab 5228 × cxp 5698 Pcnp 10928 <P cltp 10932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ss 3993 df-opab 5229 df-xp 5706 df-ltp 11054 |
This theorem is referenced by: ltexpri 11112 ltaprlem 11113 ltapr 11114 suplem1pr 11121 suplem2pr 11122 supexpr 11123 ltsrpr 11146 ltsosr 11163 mappsrpr 11177 |
Copyright terms: Public domain | W3C validator |