MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   GIF version

Theorem ltrelpr 11039
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 11026 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
2 opabssxp 5777 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)} ⊆ (P × P)
31, 2eqsstri 4029 1 <P ⊆ (P × P)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  wss 3950  wpss 3951  {copab 5204   × cxp 5682  Pcnp 10900  <P cltp 10904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-ss 3967  df-opab 5205  df-xp 5690  df-ltp 11026
This theorem is referenced by:  ltexpri  11084  ltaprlem  11085  ltapr  11086  suplem1pr  11093  suplem2pr  11094  supexpr  11095  ltsrpr  11118  ltsosr  11135  mappsrpr  11149
  Copyright terms: Public domain W3C validator