MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   GIF version

Theorem ltrelpr 10892
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 10879 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
2 opabssxp 5711 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)} ⊆ (P × P)
31, 2eqsstri 3982 1 <P ⊆ (P × P)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wss 3903  wpss 3904  {copab 5154   × cxp 5617  Pcnp 10753  <P cltp 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ss 3920  df-opab 5155  df-xp 5625  df-ltp 10879
This theorem is referenced by:  ltexpri  10937  ltaprlem  10938  ltapr  10939  suplem1pr  10946  suplem2pr  10947  supexpr  10948  ltsrpr  10971  ltsosr  10988  mappsrpr  11002
  Copyright terms: Public domain W3C validator