MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Visualization version   GIF version

Theorem ltrelpr 10927
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 10914 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
2 opabssxp 5723 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)} ⊆ (P × P)
31, 2eqsstri 3990 1 <P ⊆ (P × P)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wss 3911  wpss 3912  {copab 5164   × cxp 5629  Pcnp 10788  <P cltp 10792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ss 3928  df-opab 5165  df-xp 5637  df-ltp 10914
This theorem is referenced by:  ltexpri  10972  ltaprlem  10973  ltapr  10974  suplem1pr  10981  suplem2pr  10982  supexpr  10983  ltsrpr  11006  ltsosr  11023  mappsrpr  11037
  Copyright terms: Public domain W3C validator