![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltprord | Structured version Visualization version GIF version |
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltprord | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2815 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ P ↔ 𝐴 ∈ P)) | |
2 | 1 | anbi1d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝑦 ∈ P))) |
3 | psseq1 4082 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
4 | 2, 3 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦))) |
5 | eleq1 2815 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ P ↔ 𝐵 ∈ P)) | |
6 | 5 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
7 | psseq2 4083 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
8 | 6, 7 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
9 | df-ltp 10979 | . . 3 ⊢ <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
10 | 4, 8, 9 | brabg 5532 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
11 | 10 | bianabs 541 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊊ wpss 3944 class class class wbr 5141 Pcnp 10853 <P cltp 10857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-ltp 10979 |
This theorem is referenced by: ltsopr 11026 ltaddpr 11028 ltexprlem7 11036 ltexpri 11037 suplem1pr 11046 suplem2pr 11047 |
Copyright terms: Public domain | W3C validator |