Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltprord | Structured version Visualization version GIF version |
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltprord | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ P ↔ 𝐴 ∈ P)) | |
2 | 1 | anbi1d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝑦 ∈ P))) |
3 | psseq1 4022 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
4 | 2, 3 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦))) |
5 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ P ↔ 𝐵 ∈ P)) | |
6 | 5 | anbi2d 629 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
7 | psseq2 4023 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
8 | 6, 7 | anbi12d 631 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
9 | df-ltp 10741 | . . 3 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
10 | 4, 8, 9 | brabg 5452 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
11 | 10 | bianabs 542 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊊ wpss 3888 class class class wbr 5074 Pcnp 10615 <P cltp 10619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-ltp 10741 |
This theorem is referenced by: ltsopr 10788 ltaddpr 10790 ltexprlem7 10798 ltexpri 10799 suplem1pr 10808 suplem2pr 10809 |
Copyright terms: Public domain | W3C validator |