MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltprord Structured version   Visualization version   GIF version

Theorem ltprord 10973
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltprord ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))

Proof of Theorem ltprord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥P𝐴P))
21anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥P𝑦P) ↔ (𝐴P𝑦P)))
3 psseq1 4052 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
42, 3anbi12d 632 . . 3 (𝑥 = 𝐴 → (((𝑥P𝑦P) ∧ 𝑥𝑦) ↔ ((𝐴P𝑦P) ∧ 𝐴𝑦)))
5 eleq1 2826 . . . . 5 (𝑦 = 𝐵 → (𝑦P𝐵P))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴P𝑦P) ↔ (𝐴P𝐵P)))
7 psseq2 4053 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
86, 7anbi12d 632 . . 3 (𝑦 = 𝐵 → (((𝐴P𝑦P) ∧ 𝐴𝑦) ↔ ((𝐴P𝐵P) ∧ 𝐴𝐵)))
9 df-ltp 10928 . . 3 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
104, 8, 9brabg 5501 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ((𝐴P𝐵P) ∧ 𝐴𝐵)))
1110bianabs 543 1 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wpss 3916   class class class wbr 5110  Pcnp 10802  <P cltp 10806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-ltp 10928
This theorem is referenced by:  ltsopr  10975  ltaddpr  10977  ltexprlem7  10985  ltexpri  10986  suplem1pr  10995  suplem2pr  10996
  Copyright terms: Public domain W3C validator