| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltprord | Structured version Visualization version GIF version | ||
| Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltprord | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ P ↔ 𝐴 ∈ P)) | |
| 2 | 1 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝑦 ∈ P))) |
| 3 | psseq1 4056 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
| 4 | 2, 3 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦))) |
| 5 | eleq1 2817 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ P ↔ 𝐵 ∈ P)) | |
| 6 | 5 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
| 7 | psseq2 4057 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
| 8 | 6, 7 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
| 9 | df-ltp 10945 | . . 3 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
| 10 | 4, 8, 9 | brabg 5502 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
| 11 | 10 | bianabs 541 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊊ wpss 3918 class class class wbr 5110 Pcnp 10819 <P cltp 10823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-ltp 10945 |
| This theorem is referenced by: ltsopr 10992 ltaddpr 10994 ltexprlem7 11002 ltexpri 11003 suplem1pr 11012 suplem2pr 11013 |
| Copyright terms: Public domain | W3C validator |