Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltprord | Structured version Visualization version GIF version |
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltprord | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ P ↔ 𝐴 ∈ P)) | |
2 | 1 | anbi1d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝑦 ∈ P))) |
3 | psseq1 4018 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
4 | 2, 3 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦))) |
5 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ P ↔ 𝐵 ∈ P)) | |
6 | 5 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
7 | psseq2 4019 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
8 | 6, 7 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
9 | df-ltp 10672 | . . 3 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
10 | 4, 8, 9 | brabg 5445 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
11 | 10 | bianabs 541 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊊ wpss 3884 class class class wbr 5070 Pcnp 10546 <P cltp 10550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-ltp 10672 |
This theorem is referenced by: ltsopr 10719 ltaddpr 10721 ltexprlem7 10729 ltexpri 10730 suplem1pr 10739 suplem2pr 10740 |
Copyright terms: Public domain | W3C validator |