MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltprord Structured version   Visualization version   GIF version

Theorem ltprord 10990
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltprord ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))

Proof of Theorem ltprord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . . . 5 (𝑥 = 𝐴 → (𝑥P𝐴P))
21anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥P𝑦P) ↔ (𝐴P𝑦P)))
3 psseq1 4056 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
42, 3anbi12d 632 . . 3 (𝑥 = 𝐴 → (((𝑥P𝑦P) ∧ 𝑥𝑦) ↔ ((𝐴P𝑦P) ∧ 𝐴𝑦)))
5 eleq1 2817 . . . . 5 (𝑦 = 𝐵 → (𝑦P𝐵P))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴P𝑦P) ↔ (𝐴P𝐵P)))
7 psseq2 4057 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
86, 7anbi12d 632 . . 3 (𝑦 = 𝐵 → (((𝐴P𝑦P) ∧ 𝐴𝑦) ↔ ((𝐴P𝐵P) ∧ 𝐴𝐵)))
9 df-ltp 10945 . . 3 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
104, 8, 9brabg 5502 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ((𝐴P𝐵P) ∧ 𝐴𝐵)))
1110bianabs 541 1 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wpss 3918   class class class wbr 5110  Pcnp 10819  <P cltp 10823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-ltp 10945
This theorem is referenced by:  ltsopr  10992  ltaddpr  10994  ltexprlem7  11002  ltexpri  11003  suplem1pr  11012  suplem2pr  11013
  Copyright terms: Public domain W3C validator