Detailed syntax breakdown of Definition df-ltr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cltr 10912 | . 2
class 
<R | 
| 2 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 4 |  | cnr 10906 | . . . . . 6
class
R | 
| 5 | 3, 4 | wcel 2107 | . . . . 5
wff 𝑥 ∈
R | 
| 6 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 7 | 6 | cv 1538 | . . . . . 6
class 𝑦 | 
| 8 | 7, 4 | wcel 2107 | . . . . 5
wff 𝑦 ∈
R | 
| 9 | 5, 8 | wa 395 | . . . 4
wff (𝑥 ∈ R ∧
𝑦 ∈
R) | 
| 10 |  | vz | . . . . . . . . . . . . . 14
setvar 𝑧 | 
| 11 | 10 | cv 1538 | . . . . . . . . . . . . 13
class 𝑧 | 
| 12 |  | vw | . . . . . . . . . . . . . 14
setvar 𝑤 | 
| 13 | 12 | cv 1538 | . . . . . . . . . . . . 13
class 𝑤 | 
| 14 | 11, 13 | cop 4631 | . . . . . . . . . . . 12
class
〈𝑧, 𝑤〉 | 
| 15 |  | cer 10905 | . . . . . . . . . . . 12
class 
~R | 
| 16 | 14, 15 | cec 8744 | . . . . . . . . . . 11
class
[〈𝑧, 𝑤〉]
~R | 
| 17 | 3, 16 | wceq 1539 | . . . . . . . . . 10
wff 𝑥 = [〈𝑧, 𝑤〉]
~R | 
| 18 |  | vv | . . . . . . . . . . . . . 14
setvar 𝑣 | 
| 19 | 18 | cv 1538 | . . . . . . . . . . . . 13
class 𝑣 | 
| 20 |  | vu | . . . . . . . . . . . . . 14
setvar 𝑢 | 
| 21 | 20 | cv 1538 | . . . . . . . . . . . . 13
class 𝑢 | 
| 22 | 19, 21 | cop 4631 | . . . . . . . . . . . 12
class
〈𝑣, 𝑢〉 | 
| 23 | 22, 15 | cec 8744 | . . . . . . . . . . 11
class
[〈𝑣, 𝑢〉]
~R | 
| 24 | 7, 23 | wceq 1539 | . . . . . . . . . 10
wff 𝑦 = [〈𝑣, 𝑢〉]
~R | 
| 25 | 17, 24 | wa 395 | . . . . . . . . 9
wff (𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R
) | 
| 26 |  | cpp 10902 | . . . . . . . . . . 11
class 
+P | 
| 27 | 11, 21, 26 | co 7432 | . . . . . . . . . 10
class (𝑧 +P
𝑢) | 
| 28 | 13, 19, 26 | co 7432 | . . . . . . . . . 10
class (𝑤 +P
𝑣) | 
| 29 |  | cltp 10904 | . . . . . . . . . 10
class
<P | 
| 30 | 27, 28, 29 | wbr 5142 | . . . . . . . . 9
wff (𝑧 +P
𝑢)<P (𝑤 +P
𝑣) | 
| 31 | 25, 30 | wa 395 | . . . . . . . 8
wff ((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) | 
| 32 | 31, 20 | wex 1778 | . . . . . . 7
wff
∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) | 
| 33 | 32, 18 | wex 1778 | . . . . . 6
wff
∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) | 
| 34 | 33, 12 | wex 1778 | . . . . 5
wff
∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) | 
| 35 | 34, 10 | wex 1778 | . . . 4
wff
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)) | 
| 36 | 9, 35 | wa 395 | . . 3
wff ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣))) | 
| 37 | 36, 2, 6 | copab 5204 | . 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} | 
| 38 | 1, 37 | wceq 1539 | 1
wff 
<R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |