Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 10815 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 5679 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 {copab 5136 × cxp 5587 (class class class)co 7275 [cec 8496 +P cpp 10617 <P cltp 10619 ~R cer 10620 Rcnr 10621 <R cltr 10627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-ltr 10815 |
This theorem is referenced by: ltsrpr 10833 ltasr 10856 recexsrlem 10859 addgt0sr 10860 mulgt0sr 10861 map2psrpr 10866 supsrlem 10867 supsr 10868 ltresr 10896 axpre-lttrn 10922 |
Copyright terms: Public domain | W3C validator |