MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelsr Structured version   Visualization version   GIF version

Theorem ltrelsr 11028
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelsr <R ⊆ (R × R)

Proof of Theorem ltrelsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 11019 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
2 opabssxp 5734 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R)
31, 2eqsstri 3996 1 <R ⊆ (R × R)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wss 3917  cop 4598   class class class wbr 5110  {copab 5172   × cxp 5639  (class class class)co 7390  [cec 8672   +P cpp 10821  <P cltp 10823   ~R cer 10824  Rcnr 10825   <R cltr 10831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-ss 3934  df-opab 5173  df-xp 5647  df-ltr 11019
This theorem is referenced by:  ltsrpr  11037  ltasr  11060  recexsrlem  11063  addgt0sr  11064  mulgt0sr  11065  map2psrpr  11070  supsrlem  11071  supsr  11072  ltresr  11100  axpre-lttrn  11126
  Copyright terms: Public domain W3C validator