MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelsr Structured version   Visualization version   GIF version

Theorem ltrelsr 10959
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelsr <R ⊆ (R × R)

Proof of Theorem ltrelsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 10950 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
2 opabssxp 5706 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R)
31, 2eqsstri 3976 1 <R ⊆ (R × R)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  wss 3897  cop 4579   class class class wbr 5089  {copab 5151   × cxp 5612  (class class class)co 7346  [cec 8620   +P cpp 10752  <P cltp 10754   ~R cer 10755  Rcnr 10756   <R cltr 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ss 3914  df-opab 5152  df-xp 5620  df-ltr 10950
This theorem is referenced by:  ltsrpr  10968  ltasr  10991  recexsrlem  10994  addgt0sr  10995  mulgt0sr  10996  map2psrpr  11001  supsrlem  11002  supsr  11003  ltresr  11031  axpre-lttrn  11057
  Copyright terms: Public domain W3C validator