Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 10746 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 5669 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 {copab 5132 × cxp 5578 (class class class)co 7255 [cec 8454 +P cpp 10548 <P cltp 10550 ~R cer 10551 Rcnr 10552 <R cltr 10558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-ltr 10746 |
This theorem is referenced by: ltsrpr 10764 ltasr 10787 recexsrlem 10790 addgt0sr 10791 mulgt0sr 10792 map2psrpr 10797 supsrlem 10798 supsr 10799 ltresr 10827 axpre-lttrn 10853 |
Copyright terms: Public domain | W3C validator |