![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 10281 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 5494 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3893 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ⊆ wss 3831 〈cop 4448 class class class wbr 4930 {copab 4992 × cxp 5406 (class class class)co 6978 [cec 8089 +P cpp 10083 <P cltp 10085 ~R cer 10086 Rcnr 10087 <R cltr 10093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-in 3838 df-ss 3845 df-opab 4993 df-xp 5414 df-ltr 10281 |
This theorem is referenced by: ltsrpr 10299 ltasr 10322 recexsrlem 10325 addgt0sr 10326 mulgt0sr 10327 map2psrpr 10332 supsrlem 10333 supsr 10334 ltresr 10362 axpre-lttrn 10388 |
Copyright terms: Public domain | W3C validator |