| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version | ||
| Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelsr | ⊢ <R ⊆ (R × R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltr 11078 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
| 2 | opabssxp 5752 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ <R ⊆ (R × R) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 {copab 5186 × cxp 5657 (class class class)co 7410 [cec 8722 +P cpp 10880 <P cltp 10882 ~R cer 10883 Rcnr 10884 <R cltr 10890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-ss 3948 df-opab 5187 df-xp 5665 df-ltr 11078 |
| This theorem is referenced by: ltsrpr 11096 ltasr 11119 recexsrlem 11122 addgt0sr 11123 mulgt0sr 11124 map2psrpr 11129 supsrlem 11130 supsr 11131 ltresr 11159 axpre-lttrn 11185 |
| Copyright terms: Public domain | W3C validator |