| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version | ||
| Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelsr | ⊢ <R ⊆ (R × R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltr 10950 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
| 2 | opabssxp 5706 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ <R ⊆ (R × R) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3897 〈cop 4579 class class class wbr 5089 {copab 5151 × cxp 5612 (class class class)co 7346 [cec 8620 +P cpp 10752 <P cltp 10754 ~R cer 10755 Rcnr 10756 <R cltr 10762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-opab 5152 df-xp 5620 df-ltr 10950 |
| This theorem is referenced by: ltsrpr 10968 ltasr 10991 recexsrlem 10994 addgt0sr 10995 mulgt0sr 10996 map2psrpr 11001 supsrlem 11002 supsr 11003 ltresr 11031 axpre-lttrn 11057 |
| Copyright terms: Public domain | W3C validator |