Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelsr | Structured version Visualization version GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 10916 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 5710 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3966 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3898 〈cop 4579 class class class wbr 5092 {copab 5154 × cxp 5618 (class class class)co 7337 [cec 8567 +P cpp 10718 <P cltp 10720 ~R cer 10721 Rcnr 10722 <R cltr 10728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-opab 5155 df-xp 5626 df-ltr 10916 |
This theorem is referenced by: ltsrpr 10934 ltasr 10957 recexsrlem 10960 addgt0sr 10961 mulgt0sr 10962 map2psrpr 10967 supsrlem 10968 supsr 10969 ltresr 10997 axpre-lttrn 11023 |
Copyright terms: Public domain | W3C validator |