MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsrpr Structured version   Visualization version   GIF version

Theorem ltsrpr 10155
Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
ltsrpr ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))

Proof of Theorem ltsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 10143 . . 3 ~R Er (P × P)
2 erdm 7961 . . 3 ( ~R Er (P × P) → dom ~R = (P × P))
31, 2ax-mp 5 . 2 dom ~R = (P × P)
4 df-nr 10135 . 2 R = ((P × P) / ~R )
5 ltrelsr 10146 . 2 <R ⊆ (R × R)
6 ltrelpr 10077 . 2 <P ⊆ (P × P)
7 0npr 10071 . 2 ¬ ∅ ∈ P
8 dmplp 10091 . 2 dom +P = (P × P)
9 enrex 10145 . . 3 ~R ∈ V
10 df-ltr 10138 . . 3 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
11 addclpr 10097 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
1211ad2ant2lr 754 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
13 addclpr 10097 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
1413ad2ant2lr 754 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
1512, 14anim12ci 607 . . . . 5 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
1615an4s 650 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
17 enreceq 10144 . . . . . 6 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
18 enreceq 10144 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
19 eqcom 2772 . . . . . . 7 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
2018, 19syl6bb 278 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
2117, 20bi2anan9 629 . . . . 5 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
22 oveq12 6855 . . . . . 6 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
23 addcompr 10100 . . . . . . . . . 10 (𝑢 +P 𝐵) = (𝐵 +P 𝑢)
2423oveq1i 6856 . . . . . . . . 9 ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶)
25 addasspr 10101 . . . . . . . . 9 ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶))
26 addasspr 10101 . . . . . . . . 9 ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶))
2724, 25, 263eqtr3i 2795 . . . . . . . 8 (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶))
2827oveq2i 6857 . . . . . . 7 (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶)))
29 addasspr 10101 . . . . . . 7 ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶)))
30 addasspr 10101 . . . . . . 7 ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶)))
3128, 29, 303eqtr4i 2797 . . . . . 6 ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶))
32 addcompr 10100 . . . . . . . . . 10 (𝑣 +P 𝐴) = (𝐴 +P 𝑣)
3332oveq1i 6856 . . . . . . . . 9 ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷)
34 addasspr 10101 . . . . . . . . 9 ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷))
35 addasspr 10101 . . . . . . . . 9 ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷))
3633, 34, 353eqtr3i 2795 . . . . . . . 8 (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷))
3736oveq2i 6857 . . . . . . 7 (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷)))
38 addasspr 10101 . . . . . . 7 ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷)))
39 addasspr 10101 . . . . . . 7 ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷)))
4037, 38, 393eqtr4i 2797 . . . . . 6 ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷))
4122, 31, 403eqtr4g 2824 . . . . 5 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
4221, 41syl6bi 244 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
43 ovex 6878 . . . . 5 (𝑧 +P 𝑢) ∈ V
44 ovex 6878 . . . . 5 (𝐵 +P 𝐶) ∈ V
45 ltapr 10124 . . . . 5 (𝑓P → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
46 ovex 6878 . . . . 5 (𝑤 +P 𝑣) ∈ V
47 addcompr 10100 . . . . 5 (𝑥 +P 𝑦) = (𝑦 +P 𝑥)
48 ovex 6878 . . . . 5 (𝐴 +P 𝐷) ∈ V
4943, 44, 45, 46, 47, 48caovord3 7049 . . . 4 ((((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P) ∧ ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
5016, 42, 49syl6an 674 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
519, 1, 4, 10, 50brecop 8047 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
523, 4, 5, 6, 7, 8, 51brecop2 8048 1 ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wcel 2155  cop 4342   class class class wbr 4811   × cxp 5277  dom cdm 5279  (class class class)co 6846   Er wer 7948  [cec 7949  Pcnp 9938   +P cpp 9940  <P cltp 9942   ~R cer 9943  Rcnr 9944   <R cltr 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-omul 7773  df-er 7951  df-ec 7953  df-qs 7957  df-ni 9951  df-pli 9952  df-mi 9953  df-lti 9954  df-plpq 9987  df-mpq 9988  df-ltpq 9989  df-enq 9990  df-nq 9991  df-erq 9992  df-plq 9993  df-mq 9994  df-1nq 9995  df-rq 9996  df-ltnq 9997  df-np 10060  df-plp 10062  df-ltp 10064  df-enr 10134  df-nr 10135  df-ltr 10138
This theorem is referenced by:  gt0srpr  10156  ltsosr  10172  0lt1sr  10173  ltasr  10178  mappsrpr  10186  ltpsrpr  10187  map2psrpr  10188
  Copyright terms: Public domain W3C validator