MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mr Structured version   Visualization version   GIF version

Definition df-mr 11057
Description: Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 11120, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-mr ยทR = {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ R โˆง ๐‘ฆ โˆˆ R) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R ))}
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ค,๐‘ฃ,๐‘ข,๐‘“

Detailed syntax breakdown of Definition df-mr
StepHypRef Expression
1 cmr 10869 . 2 class ยทR
2 vx . . . . . . 7 setvar ๐‘ฅ
32cv 1538 . . . . . 6 class ๐‘ฅ
4 cnr 10864 . . . . . 6 class R
53, 4wcel 2104 . . . . 5 wff ๐‘ฅ โˆˆ R
6 vy . . . . . . 7 setvar ๐‘ฆ
76cv 1538 . . . . . 6 class ๐‘ฆ
87, 4wcel 2104 . . . . 5 wff ๐‘ฆ โˆˆ R
95, 8wa 394 . . . 4 wff (๐‘ฅ โˆˆ R โˆง ๐‘ฆ โˆˆ R)
10 vw . . . . . . . . . . . . . 14 setvar ๐‘ค
1110cv 1538 . . . . . . . . . . . . 13 class ๐‘ค
12 vv . . . . . . . . . . . . . 14 setvar ๐‘ฃ
1312cv 1538 . . . . . . . . . . . . 13 class ๐‘ฃ
1411, 13cop 4635 . . . . . . . . . . . 12 class โŸจ๐‘ค, ๐‘ฃโŸฉ
15 cer 10863 . . . . . . . . . . . 12 class ~R
1614, 15cec 8705 . . . . . . . . . . 11 class [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R
173, 16wceq 1539 . . . . . . . . . 10 wff ๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R
18 vu . . . . . . . . . . . . . 14 setvar ๐‘ข
1918cv 1538 . . . . . . . . . . . . 13 class ๐‘ข
20 vf . . . . . . . . . . . . . 14 setvar ๐‘“
2120cv 1538 . . . . . . . . . . . . 13 class ๐‘“
2219, 21cop 4635 . . . . . . . . . . . 12 class โŸจ๐‘ข, ๐‘“โŸฉ
2322, 15cec 8705 . . . . . . . . . . 11 class [โŸจ๐‘ข, ๐‘“โŸฉ] ~R
247, 23wceq 1539 . . . . . . . . . 10 wff ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R
2517, 24wa 394 . . . . . . . . 9 wff (๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R )
26 vz . . . . . . . . . . 11 setvar ๐‘ง
2726cv 1538 . . . . . . . . . 10 class ๐‘ง
28 cmp 10861 . . . . . . . . . . . . . 14 class ยทP
2911, 19, 28co 7413 . . . . . . . . . . . . 13 class (๐‘ค ยทP ๐‘ข)
3013, 21, 28co 7413 . . . . . . . . . . . . 13 class (๐‘ฃ ยทP ๐‘“)
31 cpp 10860 . . . . . . . . . . . . 13 class +P
3229, 30, 31co 7413 . . . . . . . . . . . 12 class ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“))
3311, 21, 28co 7413 . . . . . . . . . . . . 13 class (๐‘ค ยทP ๐‘“)
3413, 19, 28co 7413 . . . . . . . . . . . . 13 class (๐‘ฃ ยทP ๐‘ข)
3533, 34, 31co 7413 . . . . . . . . . . . 12 class ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))
3632, 35cop 4635 . . . . . . . . . . 11 class โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ
3736, 15cec 8705 . . . . . . . . . 10 class [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R
3827, 37wceq 1539 . . . . . . . . 9 wff ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R
3925, 38wa 394 . . . . . . . 8 wff ((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R )
4039, 20wex 1779 . . . . . . 7 wff โˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R )
4140, 18wex 1779 . . . . . 6 wff โˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R )
4241, 12wex 1779 . . . . 5 wff โˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R )
4342, 10wex 1779 . . . 4 wff โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R )
449, 43wa 394 . . 3 wff ((๐‘ฅ โˆˆ R โˆง ๐‘ฆ โˆˆ R) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R ))
4544, 2, 6, 26coprab 7414 . 2 class {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ R โˆง ๐‘ฆ โˆˆ R) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R ))}
461, 45wceq 1539 1 wff ยทR = {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ R โˆง ๐‘ฆ โˆˆ R) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~R โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~R ) โˆง ๐‘ง = [โŸจ((๐‘ค ยทP ๐‘ข) +P (๐‘ฃ ยทP ๐‘“)), ((๐‘ค ยทP ๐‘“) +P (๐‘ฃ ยทP ๐‘ข))โŸฉ] ~R ))}
Colors of variables: wff setvar class
This definition is referenced by:  mulsrpr  11075  dmmulsr  11085
  Copyright terms: Public domain W3C validator