![]() |
Metamath
Proof Explorer Theorem List (p. 252 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pi1grplem 25101 | Lemma for pi1grp 25102. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.) |
⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺))) | ||
Theorem | pi1grp 25102 | The fundamental group is a group. Proposition 1.3 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) (Revised by Mario Carneiro, 10-Aug-2015.) |
⊢ 𝐺 = (𝐽 π1 𝑌) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝐺 ∈ Grp) | ||
Theorem | pi1id 25103 | The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺)) | ||
Theorem | pi1inv 25104* | An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = 𝑌) & ⊢ (𝜑 → (𝐹‘1) = 𝑌) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) | ||
Theorem | pi1xfrf 25105* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) | ||
Theorem | pi1xfrval 25106* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) | ||
Theorem | pi1xfr 25107* | Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
Theorem | pi1xfrcnvlem 25108* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) | ||
Theorem | pi1xfrcnv 25109* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → (◡𝐺 = 𝐻 ∧ ◡𝐺 ∈ (𝑄 GrpHom 𝑃))) | ||
Theorem | pi1xfrgim 25110* | The mapping 𝐺 between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpIso 𝑄)) | ||
Theorem | pi1cof 25111* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) | ||
Theorem | pi1coval 25112* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) | ||
Theorem | pi1coghm 25113* | The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
Syntax | cclm 25114 | Syntax for the class of subcomplex modules. |
class ℂMod | ||
Definition | df-clm 25115* | Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers ℂfld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20603), left modules over such subrings are the same as right modules, see rmodislmod 20950. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))} | ||
Theorem | isclm 25116 | A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
Theorem | clmsca 25117 | The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) | ||
Theorem | clmsubrg 25118 | The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) | ||
Theorem | clmlmod 25119 | A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | ||
Theorem | clmgrp 25120 | A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Grp) | ||
Theorem | clmabl 25121 | A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | ||
Theorem | clmring 25122 | The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) | ||
Theorem | clmfgrp 25123 | The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) | ||
Theorem | clm0 25124 | The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) | ||
Theorem | clm1 25125 | The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) | ||
Theorem | clmadd 25126 | The addition of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → + = (+g‘𝐹)) | ||
Theorem | clmmul 25127 | The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) | ||
Theorem | clmcj 25128 | The conjugation of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) | ||
Theorem | isclmi 25129 | Reverse direction of isclm 25116. (Contributed by Mario Carneiro, 30-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) | ||
Theorem | clmzss 25130 | The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → ℤ ⊆ 𝐾) | ||
Theorem | clmsscn 25131 | The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) | ||
Theorem | clmsub 25132 | Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴 − 𝐵) = (𝐴(-g‘𝐹)𝐵)) | ||
Theorem | clmneg 25133 | Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → -𝐴 = ((invg‘𝐹)‘𝐴)) | ||
Theorem | clmneg1 25134 | Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → -1 ∈ 𝐾) | ||
Theorem | clmabs 25135 | Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) | ||
Theorem | clmacl 25136 | Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
Theorem | clmmcl 25137 | Closure of ring multiplication for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
Theorem | clmsubcl 25138 | Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 − 𝑌) ∈ 𝐾) | ||
Theorem | lmhmclm 25139 | The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod)) | ||
Theorem | clmvscl 25140 | Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20898. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) | ||
Theorem | clmvsass 25141 | Associative law for scalar product. Analogue of lmodvsass 20907. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 · 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
Theorem | clmvscom 25142 | Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑄 · (𝑅 · 𝑋)) = (𝑅 · (𝑄 · 𝑋))) | ||
Theorem | clmvsdir 25143 | Distributive law for scalar product (right-distributivity). (lmodvsdir 20906 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
Theorem | clmvsdi 25144 | Distributive law for scalar product (left-distributivity). (lmodvsdi 20905 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) | ||
Theorem | clmvs1 25145 | Scalar product with ring unity. (lmodvs1 20910 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) | ||
Theorem | clmvs2 25146 | A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + 𝐴) = (2 · 𝐴)) | ||
Theorem | clm0vs 25147 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (lmod0vs 20915 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (0 · 𝑋) = 0 ) | ||
Theorem | clmopfne 25148 | The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 3-Oct-2021.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ + = (+𝑓‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → + ≠ · ) | ||
Theorem | isclmp 25149* | The predicate "is a subcomplex module". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) | ||
Theorem | isclmi0 25150* | Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (ℂfld ↾s 𝐾) & ⊢ 𝑊 ∈ Grp & ⊢ 𝐾 ∈ (SubRing‘ℂfld) & ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ⇒ ⊢ 𝑊 ∈ ℂMod | ||
Theorem | clmvneg1 25151 | Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (lmodvneg1 20925 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (-1 · 𝑋) = (𝑁‘𝑋)) | ||
Theorem | clmvsneg 25152 | Multiplication of a vector by a negated scalar. (lmodvsneg 20926 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (-𝑅 · 𝑋)) | ||
Theorem | clmmulg 25153 | The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ∙ = (.g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵)) | ||
Theorem | clmsubdir 25154 | Scalar multiplication distributive law for subtraction. (lmodsubdir 20940 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) | ||
Theorem | clmpm1dir 25155 | Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) | ||
Theorem | clmnegneg 25156 | Double negative of a vector. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (-1 · (-1 · 𝐴)) = 𝐴) | ||
Theorem | clmnegsubdi2 25157 | Distribution of negative over vector subtraction. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (-1 · (𝐴 + (-1 · 𝐵))) = (𝐵 + (-1 · 𝐴))) | ||
Theorem | clmsub4 25158 | Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) | ||
Theorem | clmvsrinv 25159 | A vector minus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = 0 ) | ||
Theorem | clmvslinv 25160 | Minus a vector plus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ((-1 · 𝐴) + 𝐴) = 0 ) | ||
Theorem | clmvsubval 25161 | Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20937. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) | ||
Theorem | clmvsubval2 25162 | Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = ((-1 · 𝐵) + 𝐴)) | ||
Theorem | clmvz 25163 | Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ( 0 − 𝐴) = (-1 · 𝐴)) | ||
Theorem | zlmclm 25164 | The ℤ-module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod) | ||
Theorem | clmzlmvsca 25165 | The scalar product of a subcomplex module matches the scalar product of the derived ℤ-module, which implies, together with zlmbas 21552 and zlmplusg 21554, that any module over ℤ is structure-equivalent to the canonical ℤ-module ℤMod‘𝐺. (Contributed by Mario Carneiro, 30-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ ℂMod ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋)) → (𝐴( ·𝑠 ‘𝐺)𝐵) = (𝐴( ·𝑠 ‘𝑊)𝐵)) | ||
Theorem | nmoleub2lem 25166* | Lemma for nmoleub2a 25169 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) & ⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝜓 → (𝐿‘𝑥) ≤ 𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2lem3 25167* | Lemma for nmoleub2a 25169 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑆)) & ⊢ (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴))) & ⊢ (𝜑 → ¬ (𝑀‘(𝐹‘𝐵)) ≤ (𝐴 · (𝐿‘𝐵))) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | nmoleub2lem2 25168* | Lemma for nmoleub2a 25169 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥)𝑂𝑅 → (𝐿‘𝑥) ≤ 𝑅)) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥) < 𝑅 → (𝐿‘𝑥)𝑂𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2a 25169* | The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) ≤ 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2b 25170* | The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub3 25171* | The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → ℝ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmhmcn 25172 | A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
Theorem | cmodscexp 25173 | The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) | ||
Theorem | cmodscmulexp 25174 | The scalar product of a vector with powers of i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains i. (Contributed by AV, 18-Oct-2021.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋) | ||
Usually, "complex vector spaces" are vector spaces over the field of the complex numbers, see for example the definition in [Roman] p. 36. In the setting of set.mm, it is convenient to consider collectively vector spaces on subfields of the field of complex numbers. We call these, "subcomplex vector spaces" and collect them in the class ℂVec defined in df-cvs 25176 and characterized in iscvs 25179. These include rational vector spaces (qcvs 25200), real vector spaces (recvs 25198) and complex vector spaces (cncvs 25197). This definition is analogous to the definition of subcomplex modules (and their class ℂMod), which are modules over subrings of the field of complex numbers. Note that ZZ-modules (that are roughly the same thing as Abelian groups, see zlmclm 25164) are subcomplex modules but are not subcomplex vector spaces (see zclmncvs 25201), because the ring ZZ is not a division ring (see zringndrg 21502). Since the field of complex numbers is commutative, so are its subrings, so there is no need to explicitly state "left module" or "left vector space" for subcomplex modules or vector spaces. | ||
Syntax | ccvs 25175 | Syntax for the class of subcomplex vector spaces. |
class ℂVec | ||
Definition | df-cvs 25176 | Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ ℂVec = (ℂMod ∩ LVec) | ||
Theorem | cvslvec 25177 | A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LVec) | ||
Theorem | cvsclm 25178 | A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
Theorem | iscvs 25179 | A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) | ||
Theorem | iscvsp 25180* | The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) | ||
Theorem | iscvsi 25181* | Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 ∈ Grp & ⊢ 𝑆 = (ℂfld ↾s 𝐾) & ⊢ 𝑆 ∈ DivRing & ⊢ 𝐾 ∈ (SubRing‘ℂfld) & ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
Theorem | cvsi 25182* | The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (Base‘(Scalar‘𝑊)) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ ∙ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥 ∈ 𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))) | ||
Theorem | cvsunit 25183 | Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) | ||
Theorem | cvsdiv 25184 | Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) | ||
Theorem | cvsdivcl 25185 | The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) | ||
Theorem | cvsmuleqdivd 25186 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) | ||
Theorem | cvsdiveqd 25187 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) | ||
Theorem | cnlmodlem1 25188 | Lemma 1 for cnlmod 25192. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Base‘𝑊) = ℂ | ||
Theorem | cnlmodlem2 25189 | Lemma 2 for cnlmod 25192. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (+g‘𝑊) = + | ||
Theorem | cnlmodlem3 25190 | Lemma 3 for cnlmod 25192. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Scalar‘𝑊) = ℂfld | ||
Theorem | cnlmod4 25191 | Lemma 4 for cnlmod 25192. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( ·𝑠 ‘𝑊) = · | ||
Theorem | cnlmod 25192 | The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ LMod | ||
Theorem | cnstrcvs 25193 | The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
Theorem | cnrbas 25194 | The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (Base‘𝐶) = ℂ | ||
Theorem | cnrlmod 25195 | The complex left module of complex numbers is a left module. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LMod | ||
Theorem | cnrlvec 25196 | The complex left module of complex numbers is a left vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LVec | ||
Theorem | cncvs 25197 | The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ ℂVec | ||
Theorem | recvs 25198 | The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.) |
⊢ 𝑅 = (ringLMod‘ℝfld) ⇒ ⊢ 𝑅 ∈ ℂVec | ||
Theorem | recvsOLD 25199 | Obsolete version of recvs 25198 as of 23-Nov-2024. (Contributed by AV, 22-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = (ringLMod‘ℝfld) ⇒ ⊢ 𝑅 ∈ ℂVec | ||
Theorem | qcvs 25200 | The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
⊢ 𝑄 = (ringLMod‘(ℂfld ↾s ℚ)) ⇒ ⊢ 𝑄 ∈ ℂVec |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |