HomeHome Metamath Proof Explorer
Theorem List (p. 252 of 458)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28805)
  Hilbert Space Explorer  Hilbert Space Explorer
(28806-30328)
  Users' Mathboxes  Users' Mathboxes
(30329-45797)
 

Theorem List for Metamath Proof Explorer - 25101-25200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremulmdvlem3 25101* Lemma for ulmdv 25102. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))    &   (𝜑𝐺:𝑋⟶ℂ)    &   ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))    &   (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)       ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
 
Theoremulmdv 25102* If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))    &   (𝜑𝐺:𝑋⟶ℂ)    &   ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))    &   (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)       (𝜑 → (𝑆 D 𝐺) = 𝐻)
 
Theoremmtest 25103* The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
𝑍 = (ℤ𝑁)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))    &   (𝜑𝑀𝑊)    &   ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)    &   ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))    &   (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )       (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
 
Theoremmtestbdd 25104* Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
𝑍 = (ℤ𝑁)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))    &   (𝜑𝑀𝑊)    &   ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)    &   ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))    &   (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )    &   (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
 
Theoremmbfulm 25105 A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 24373.) (Contributed by Mario Carneiro, 18-Mar-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶MblFn)    &   (𝜑𝐹(⇝𝑢𝑆)𝐺)       (𝜑𝐺 ∈ MblFn)
 
Theoremiblulm 25106 A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶𝐿1)    &   (𝜑𝐹(⇝𝑢𝑆)𝐺)    &   (𝜑 → (vol‘𝑆) ∈ ℝ)       (𝜑𝐺 ∈ 𝐿1)
 
Theoremitgulm 25107* A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶𝐿1)    &   (𝜑𝐹(⇝𝑢𝑆)𝐺)    &   (𝜑 → (vol‘𝑆) ∈ ℝ)       (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
 
Theoremitgulm2 25108* A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)    &   (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))    &   (𝜑 → (vol‘𝑆) ∈ ℝ)       (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
 
14.2.3  Power series
 
Theorempserval 25109* Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))       (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
 
Theorempserval2 25110* Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))       ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
 
Theorempsergf 25111* The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)       (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
 
Theoremradcnvlem1 25112* Lemma for radcnvlt1 25117, radcnvle 25119. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < (abs‘𝑌))    &   (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )    &   𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))       (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
 
Theoremradcnvlem2 25113* Lemma for radcnvlt1 25117, radcnvle 25119. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < (abs‘𝑌))    &   (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )       (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
 
Theoremradcnvlem3 25114* Lemma for radcnvlt1 25117, radcnvle 25119. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < (abs‘𝑌))    &   (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )       (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
 
Theoremradcnv0 25115* Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)       (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
 
Theoremradcnvcl 25116* The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )       (𝜑𝑅 ∈ (0[,]+∞))
 
Theoremradcnvlt1 25117* If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < 𝑅)    &   𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))       (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
 
Theoremradcnvlt2 25118* If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < 𝑅)       (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
 
Theoremradcnvle 25119* If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )       (𝜑 → (abs‘𝑋) ≤ 𝑅)
 
Theoremdvradcnv 25120* The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑 → (abs‘𝑋) < 𝑅)       (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
 
Theorempserulm 25121* If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑𝑀 < 𝑅)    &   (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))       (𝜑𝐻(⇝𝑢𝑆)𝐹)
 
Theorempsercn2 25122* Since by pserulm 25121 the series converges uniformly, it is also continuous by ulmcn 25098. (Contributed by Mario Carneiro, 3-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑𝑀 < 𝑅)    &   (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))       (𝜑𝐹 ∈ (𝑆cn→ℂ))
 
Theorempsercnlem2 25123* Lemma for psercn 25125. (Contributed by Mario Carneiro, 18-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))       ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
 
Theorempsercnlem1 25124* Lemma for psercn 25125. (Contributed by Mario Carneiro, 18-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))       ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
 
Theorempsercn 25125* An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))       (𝜑𝐹 ∈ (𝑆cn→ℂ))
 
Theorempserdvlem1 25126* Lemma for pserdv 25128. (Contributed by Mario Carneiro, 7-May-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))       ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
 
Theorempserdvlem2 25127* Lemma for pserdv 25128. (Contributed by Mario Carneiro, 7-May-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))    &   𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))       ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
 
Theorempserdv 25128* The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))    &   𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))       (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
 
Theorempserdv2 25129* The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))    &   𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )    &   𝑆 = (abs “ (0[,)𝑅))    &   𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))    &   𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))       (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
 
Theoremabelthlem1 25130* Lemma for abelth 25140. (Contributed by Mario Carneiro, 1-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )       (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑧𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
 
Theoremabelthlem2 25131* Lemma for abelth 25140. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}       (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
 
Theoremabelthlem3 25132* Lemma for abelth 25140. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}       ((𝜑𝑋𝑆) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑋𝑛)))) ∈ dom ⇝ )
 
Theoremabelthlem4 25133* Lemma for abelth 25140. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))       (𝜑𝐹:𝑆⟶ℂ)
 
Theoremabelthlem5 25134* Lemma for abelth 25140. (Contributed by Mario Carneiro, 1-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))    &   (𝜑 → seq0( + , 𝐴) ⇝ 0)       ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
 
Theoremabelthlem6 25135* Lemma for abelth 25140. (Contributed by Mario Carneiro, 2-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))    &   (𝜑 → seq0( + , 𝐴) ⇝ 0)    &   (𝜑𝑋 ∈ (𝑆 ∖ {1}))       (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
 
Theoremabelthlem7a 25136* Lemma for abelth 25140. (Contributed by Mario Carneiro, 8-May-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))    &   (𝜑 → seq0( + , 𝐴) ⇝ 0)    &   (𝜑𝑋 ∈ (𝑆 ∖ {1}))       (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))))
 
Theoremabelthlem7 25137* Lemma for abelth 25140. (Contributed by Mario Carneiro, 2-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))    &   (𝜑 → seq0( + , 𝐴) ⇝ 0)    &   (𝜑𝑋 ∈ (𝑆 ∖ {1}))    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ (ℤ𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅)    &   (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))       (𝜑 → (abs‘(𝐹𝑋)) < ((𝑀 + 1) · 𝑅))
 
Theoremabelthlem8 25138* Lemma for abelth 25140. (Contributed by Mario Carneiro, 2-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))    &   (𝜑 → seq0( + , 𝐴) ⇝ 0)       ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
 
Theoremabelthlem9 25139* Lemma for abelth 25140. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))       ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
 
Theoremabelth 25140* Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 25125.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝑀)    &   𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}    &   𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))       (𝜑𝐹 ∈ (𝑆cn→ℂ))
 
Theoremabelth2 25141* Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.)
(𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )    &   𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))       (𝜑𝐹 ∈ ((0[,]1)–cn→ℂ))
 
14.3  Basic trigonometry
 
14.3.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 25142 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
exp ∈ (ℂ–cn→ℂ)
 
Theoremsincn 25143 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
sin ∈ (ℂ–cn→ℂ)
 
Theoremcoscn 25144 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
cos ∈ (ℂ–cn→ℂ)
 
Theoremreeff1olem 25145* Lemma for reeff1o 25146. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1o 25146 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
(exp ↾ ℝ):ℝ–1-1-onto→ℝ+
 
Theoremreefiso 25147 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
(exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
 
Theoremefcvx 25148 The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
 
Theoremreefgim 25149 The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.)
𝑃 = ((mulGrp‘ℂfld) ↾s+)       (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)
 
14.3.2  Properties of pi = 3.14159...
 
Theorempilem1 25150 Lemma for pire 25155, pigt2lt4 25153 and sinpi 25154. (Contributed by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
 
Theorempilem2 25151 Lemma for pire 25155, pigt2lt4 25153 and sinpi 25154. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.)
(𝜑𝐴 ∈ (2(,)4))    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → (sin‘𝐴) = 0)    &   (𝜑 → (sin‘𝐵) = 0)       (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵)
 
Theorempilem3 25152 Lemma for pire 25155, pigt2lt4 25153 and sinpi 25154. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
Theorempigt2lt4 25153 π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(2 < π ∧ π < 4)
 
Theoremsinpi 25154 The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘π) = 0
 
Theorempire 25155 π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
π ∈ ℝ
 
Theorempicn 25156 π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
π ∈ ℂ
 
Theorempipos 25157 π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
0 < π
 
Theorempirp 25158 π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
π ∈ ℝ+
 
Theoremnegpicn 25159 is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
-π ∈ ℂ
 
Theoremsinhalfpilem 25160 Lemma for sinhalfpi 25165 and coshalfpi 25166. (Contributed by Paul Chapman, 23-Jan-2008.)
((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
 
Theoremhalfpire 25161 π / 2 is real. (Contributed by David Moews, 28-Feb-2017.)
(π / 2) ∈ ℝ
 
Theoremneghalfpire 25162 -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ
 
Theoremneghalfpirx 25163 -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
-(π / 2) ∈ ℝ*
 
Theorempidiv2halves 25164 Adding π / 2 to itself gives π. See 2halves 11907. (Contributed by David A. Wheeler, 8-Dec-2018.)
((π / 2) + (π / 2)) = π
 
Theoremsinhalfpi 25165 The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(π / 2)) = 1
 
Theoremcoshalfpi 25166 The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(π / 2)) = 0
 
Theoremcosneghalfpi 25167 The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.)
(cos‘-(π / 2)) = 0
 
Theoremefhalfpi 25168 The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (π / 2))) = i
 
Theoremcospi 25169 The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘π) = -1
 
Theoremefipi 25170 The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(exp‘(i · π)) = -1
 
Theoremeulerid 25171 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
((exp‘(i · π)) + 1) = 0
 
Theoremsin2pi 25172 The sine of is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
(sin‘(2 · π)) = 0
 
Theoremcos2pi 25173 The cosine of is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
(cos‘(2 · π)) = 1
 
Theoremef2pi 25174 The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(exp‘(i · (2 · π))) = 1
 
Theoremef2kpi 25175 If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
(𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)
 
Theoremefper 25176 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴))
 
Theoremsinperlem 25177 Lemma for sinper 25178 and cosper 25179. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))    &   ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))       ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
 
Theoremsinper 25178 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴))
 
Theoremcosper 25179 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴))
 
Theoremsin2kpi 25180 If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0)
 
Theoremcos2kpi 25181 If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
(𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
 
Theoremsin2pim 25182 Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴))
 
Theoremcos2pim 25183 Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴))
 
Theoremsinmpi 25184 Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
 
Theoremcosmpi 25185 Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴))
 
Theoremsinppi 25186 Sine of a number plus π. (Contributed by NM, 10-Aug-2008.)
(𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴))
 
Theoremcosppi 25187 Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.)
(𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴))
 
Theoremefimpi 25188 The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.)
(𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴)))
 
Theoremsinhalfpip 25189 The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
 
Theoremsinhalfpim 25190 The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
 
Theoremcoshalfpip 25191 The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴))
 
Theoremcoshalfpim 25192 The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴))
 
Theoremptolemy 25193 Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 15578, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))
 
Theoremsincosq1lem 25194 Lemma for sincosq1sgn 25195. (Contributed by Paul Chapman, 24-Jan-2008.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
 
Theoremsincosq1sgn 25195 The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
 
Theoremsincosq2sgn 25196 The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
 
Theoremsincosq3sgn 25197 The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
 
Theoremsincosq4sgn 25198 The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
 
Theoremcoseq00topi 25199 Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
(𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 
Theoremcoseq0negpitopi 25200 Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
(𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45797
  Copyright terms: Public domain < Previous  Next >