| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbl | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| ismbl | ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 4189 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) | |
| 2 | 1 | fveq2d 6879 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∩ 𝑦)) = (vol*‘(𝑥 ∩ 𝐴))) |
| 3 | difeq2 4095 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∖ 𝑦) = (𝑥 ∖ 𝐴)) | |
| 4 | 3 | fveq2d 6879 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∖ 𝑦)) = (vol*‘(𝑥 ∖ 𝐴))) |
| 5 | 2, 4 | oveq12d 7421 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
| 6 | 5 | eqeq2d 2746 | . . . 4 ⊢ (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
| 7 | 6 | ralbidv 3163 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
| 8 | df-vol 25416 | . . . . . 6 ⊢ vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) | |
| 9 | 8 | dmeqi 5884 | . . . . 5 ⊢ dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) |
| 10 | dmres 5999 | . . . . 5 ⊢ dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) | |
| 11 | ovolf 25433 | . . . . . . 7 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
| 12 | 11 | fdmi 6716 | . . . . . 6 ⊢ dom vol* = 𝒫 ℝ |
| 13 | 12 | ineq2i 4192 | . . . . 5 ⊢ ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
| 14 | 9, 10, 13 | 3eqtri 2762 | . . . 4 ⊢ dom vol = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
| 15 | dfrab2 4295 | . . . 4 ⊢ {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) | |
| 16 | 14, 15 | eqtr4i 2761 | . . 3 ⊢ dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} |
| 17 | 7, 16 | elrab2 3674 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
| 18 | reex 11218 | . . . 4 ⊢ ℝ ∈ V | |
| 19 | 18 | elpw2 5304 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ) |
| 20 | ffn 6705 | . . . . . . 7 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ) | |
| 21 | elpreima 7047 | . . . . . . 7 ⊢ (vol* Fn 𝒫 ℝ → (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))) | |
| 22 | 11, 20, 21 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)) |
| 23 | 22 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
| 24 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
| 25 | 23, 24 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
| 26 | 25 | ralbii2 3078 | . . 3 ⊢ (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
| 27 | 19, 26 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
| 28 | 17, 27 | bitri 275 | 1 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 “ cima 5657 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 + caddc 11130 +∞cpnf 11264 [,]cicc 13363 vol*covol 25413 volcvol 25414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-ico 13366 df-icc 13367 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-ovol 25415 df-vol 25416 |
| This theorem is referenced by: ismbl2 25478 mblss 25482 mblsplit 25483 cmmbl 25485 shftmbl 25489 voliunlem2 25502 |
| Copyright terms: Public domain | W3C validator |