MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl Structured version   Visualization version   GIF version

Theorem ismbl 24690
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ismbl (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4140 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
21fveq2d 6778 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
3 difeq2 4051 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43fveq2d 6778 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
52, 4oveq12d 7293 . . . . 5 (𝑦 = 𝐴 → ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
65eqeq2d 2749 . . . 4 (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
76ralbidv 3112 . . 3 (𝑦 = 𝐴 → (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
8 df-vol 24629 . . . . . 6 vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
98dmeqi 5813 . . . . 5 dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
10 dmres 5913 . . . . 5 dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*)
11 ovolf 24646 . . . . . . 7 vol*:𝒫 ℝ⟶(0[,]+∞)
1211fdmi 6612 . . . . . 6 dom vol* = 𝒫 ℝ
1312ineq2i 4143 . . . . 5 ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
149, 10, 133eqtri 2770 . . . 4 dom vol = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
15 dfrab2 4244 . . . 4 {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
1614, 15eqtr4i 2769 . . 3 dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}
177, 16elrab2 3627 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
18 reex 10962 . . . 4 ℝ ∈ V
1918elpw2 5269 . . 3 (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)
20 ffn 6600 . . . . . . 7 (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ)
21 elpreima 6935 . . . . . . 7 (vol* Fn 𝒫 ℝ → (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
2211, 20, 21mp2b 10 . . . . . 6 (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))
2322imbi1i 350 . . . . 5 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
24 impexp 451 . . . . 5 (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2523, 24bitri 274 . . . 4 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2625ralbii2 3090 . . 3 (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
2719, 26anbi12i 627 . 2 ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2817, 27bitri 274 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  cdif 3884  cin 3886  wss 3887  𝒫 cpw 4533  ccnv 5588  dom cdm 5589  cres 5591  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874  +∞cpnf 11006  [,]cicc 13082  vol*covol 24626  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-ovol 24628  df-vol 24629
This theorem is referenced by:  ismbl2  24691  mblss  24695  mblsplit  24696  cmmbl  24698  shftmbl  24702  voliunlem2  24715
  Copyright terms: Public domain W3C validator