![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
ismbl | ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4221 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) | |
2 | 1 | fveq2d 6910 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∩ 𝑦)) = (vol*‘(𝑥 ∩ 𝐴))) |
3 | difeq2 4129 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∖ 𝑦) = (𝑥 ∖ 𝐴)) | |
4 | 3 | fveq2d 6910 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∖ 𝑦)) = (vol*‘(𝑥 ∖ 𝐴))) |
5 | 2, 4 | oveq12d 7448 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
6 | 5 | eqeq2d 2745 | . . . 4 ⊢ (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
7 | 6 | ralbidv 3175 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
8 | df-vol 25513 | . . . . . 6 ⊢ vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) | |
9 | 8 | dmeqi 5917 | . . . . 5 ⊢ dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) |
10 | dmres 6031 | . . . . 5 ⊢ dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) | |
11 | ovolf 25530 | . . . . . . 7 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
12 | 11 | fdmi 6747 | . . . . . 6 ⊢ dom vol* = 𝒫 ℝ |
13 | 12 | ineq2i 4224 | . . . . 5 ⊢ ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
14 | 9, 10, 13 | 3eqtri 2766 | . . . 4 ⊢ dom vol = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
15 | dfrab2 4325 | . . . 4 ⊢ {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) | |
16 | 14, 15 | eqtr4i 2765 | . . 3 ⊢ dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} |
17 | 7, 16 | elrab2 3697 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
18 | reex 11243 | . . . 4 ⊢ ℝ ∈ V | |
19 | 18 | elpw2 5339 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ) |
20 | ffn 6736 | . . . . . . 7 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ) | |
21 | elpreima 7077 | . . . . . . 7 ⊢ (vol* Fn 𝒫 ℝ → (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))) | |
22 | 11, 20, 21 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)) |
23 | 22 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
24 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
25 | 23, 24 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
26 | 25 | ralbii2 3086 | . . 3 ⊢ (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
27 | 19, 26 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
28 | 17, 27 | bitri 275 | 1 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 ∀wral 3058 {crab 3432 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 ◡ccnv 5687 dom cdm 5688 ↾ cres 5690 “ cima 5691 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 + caddc 11155 +∞cpnf 11289 [,]cicc 13386 vol*covol 25510 volcvol 25511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-ico 13389 df-icc 13390 df-fz 13544 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-ovol 25512 df-vol 25513 |
This theorem is referenced by: ismbl2 25575 mblss 25579 mblsplit 25580 cmmbl 25582 shftmbl 25586 voliunlem2 25599 |
Copyright terms: Public domain | W3C validator |