Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
ismbl | ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4137 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) | |
2 | 1 | fveq2d 6760 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∩ 𝑦)) = (vol*‘(𝑥 ∩ 𝐴))) |
3 | difeq2 4047 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∖ 𝑦) = (𝑥 ∖ 𝐴)) | |
4 | 3 | fveq2d 6760 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∖ 𝑦)) = (vol*‘(𝑥 ∖ 𝐴))) |
5 | 2, 4 | oveq12d 7273 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
6 | 5 | eqeq2d 2749 | . . . 4 ⊢ (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
7 | 6 | ralbidv 3120 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
8 | df-vol 24534 | . . . . . 6 ⊢ vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) | |
9 | 8 | dmeqi 5802 | . . . . 5 ⊢ dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) |
10 | dmres 5902 | . . . . 5 ⊢ dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) | |
11 | ovolf 24551 | . . . . . . 7 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
12 | 11 | fdmi 6596 | . . . . . 6 ⊢ dom vol* = 𝒫 ℝ |
13 | 12 | ineq2i 4140 | . . . . 5 ⊢ ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
14 | 9, 10, 13 | 3eqtri 2770 | . . . 4 ⊢ dom vol = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
15 | dfrab2 4241 | . . . 4 ⊢ {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) | |
16 | 14, 15 | eqtr4i 2769 | . . 3 ⊢ dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} |
17 | 7, 16 | elrab2 3620 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
18 | reex 10893 | . . . 4 ⊢ ℝ ∈ V | |
19 | 18 | elpw2 5264 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ) |
20 | ffn 6584 | . . . . . . 7 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ) | |
21 | elpreima 6917 | . . . . . . 7 ⊢ (vol* Fn 𝒫 ℝ → (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))) | |
22 | 11, 20, 21 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)) |
23 | 22 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
24 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
25 | 23, 24 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
26 | 25 | ralbii2 3088 | . . 3 ⊢ (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
27 | 19, 26 | anbi12i 626 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
28 | 17, 27 | bitri 274 | 1 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 +∞cpnf 10937 [,]cicc 13011 vol*covol 24531 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: ismbl2 24596 mblss 24600 mblsplit 24601 cmmbl 24603 shftmbl 24607 voliunlem2 24620 |
Copyright terms: Public domain | W3C validator |