MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl Structured version   Visualization version   GIF version

Theorem ismbl 24054
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ismbl (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4180 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
21fveq2d 6667 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
3 difeq2 4090 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43fveq2d 6667 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
52, 4oveq12d 7163 . . . . 5 (𝑦 = 𝐴 → ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
65eqeq2d 2829 . . . 4 (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
76ralbidv 3194 . . 3 (𝑦 = 𝐴 → (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
8 df-vol 23993 . . . . . 6 vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
98dmeqi 5766 . . . . 5 dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
10 dmres 5868 . . . . 5 dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*)
11 ovolf 24010 . . . . . . 7 vol*:𝒫 ℝ⟶(0[,]+∞)
1211fdmi 6517 . . . . . 6 dom vol* = 𝒫 ℝ
1312ineq2i 4183 . . . . 5 ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
149, 10, 133eqtri 2845 . . . 4 dom vol = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
15 dfrab2 4276 . . . 4 {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
1614, 15eqtr4i 2844 . . 3 dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}
177, 16elrab2 3680 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
18 reex 10616 . . . 4 ℝ ∈ V
1918elpw2 5239 . . 3 (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)
20 ffn 6507 . . . . . . 7 (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ)
21 elpreima 6820 . . . . . . 7 (vol* Fn 𝒫 ℝ → (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
2211, 20, 21mp2b 10 . . . . . 6 (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))
2322imbi1i 351 . . . . 5 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
24 impexp 451 . . . . 5 (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2523, 24bitri 276 . . . 4 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2625ralbii2 3160 . . 3 (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
2719, 26anbi12i 626 . 2 ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2817, 27bitri 276 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {cab 2796  wral 3135  {crab 3139  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4535  ccnv 5547  dom cdm 5548  cres 5550  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528  +∞cpnf 10660  [,]cicc 12729  vol*covol 23990  volcvol 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-ovol 23992  df-vol 23993
This theorem is referenced by:  ismbl2  24055  mblss  24059  mblsplit  24060  cmmbl  24062  shftmbl  24066  voliunlem2  24079
  Copyright terms: Public domain W3C validator