Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismbl | Structured version Visualization version GIF version |
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
ismbl | ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4145 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) | |
2 | 1 | fveq2d 6772 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∩ 𝑦)) = (vol*‘(𝑥 ∩ 𝐴))) |
3 | difeq2 4055 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ∖ 𝑦) = (𝑥 ∖ 𝐴)) | |
4 | 3 | fveq2d 6772 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (vol*‘(𝑥 ∖ 𝑦)) = (vol*‘(𝑥 ∖ 𝐴))) |
5 | 2, 4 | oveq12d 7286 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
6 | 5 | eqeq2d 2750 | . . . 4 ⊢ (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
7 | 6 | ralbidv 3122 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦))) ↔ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
8 | df-vol 24610 | . . . . . 6 ⊢ vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) | |
9 | 8 | dmeqi 5810 | . . . . 5 ⊢ dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) |
10 | dmres 5910 | . . . . 5 ⊢ dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) | |
11 | ovolf 24627 | . . . . . . 7 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
12 | 11 | fdmi 6608 | . . . . . 6 ⊢ dom vol* = 𝒫 ℝ |
13 | 12 | ineq2i 4148 | . . . . 5 ⊢ ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
14 | 9, 10, 13 | 3eqtri 2771 | . . . 4 ⊢ dom vol = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) |
15 | dfrab2 4249 | . . . 4 ⊢ {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} ∩ 𝒫 ℝ) | |
16 | 14, 15 | eqtr4i 2770 | . . 3 ⊢ dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝑦)) + (vol*‘(𝑥 ∖ 𝑦)))} |
17 | 7, 16 | elrab2 3628 | . 2 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
18 | reex 10946 | . . . 4 ⊢ ℝ ∈ V | |
19 | 18 | elpw2 5272 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ) |
20 | ffn 6596 | . . . . . . 7 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ) | |
21 | elpreima 6929 | . . . . . . 7 ⊢ (vol* Fn 𝒫 ℝ → (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))) | |
22 | 11, 20, 21 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)) |
23 | 22 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
24 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | |
25 | 23, 24 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (◡vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
26 | 25 | ralbii2 3090 | . . 3 ⊢ (∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))))) |
27 | 19, 26 | anbi12i 626 | . 2 ⊢ ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (◡vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
28 | 17, 27 | bitri 274 | 1 ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 {crab 3069 ∖ cdif 3888 ∩ cin 3890 ⊆ wss 3891 𝒫 cpw 4538 ◡ccnv 5587 dom cdm 5588 ↾ cres 5590 “ cima 5591 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 0cc0 10855 + caddc 10858 +∞cpnf 10990 [,]cicc 13064 vol*covol 24607 volcvol 24608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-icc 13068 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-ovol 24609 df-vol 24610 |
This theorem is referenced by: ismbl2 24672 mblss 24676 mblsplit 24677 cmmbl 24679 shftmbl 24683 voliunlem2 24696 |
Copyright terms: Public domain | W3C validator |