MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl Structured version   Visualization version   GIF version

Theorem ismbl 25546
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ismbl (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4207 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
21fveq2d 6905 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
3 difeq2 4115 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43fveq2d 6905 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
52, 4oveq12d 7442 . . . . 5 (𝑦 = 𝐴 → ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
65eqeq2d 2737 . . . 4 (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
76ralbidv 3168 . . 3 (𝑦 = 𝐴 → (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
8 df-vol 25485 . . . . . 6 vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
98dmeqi 5911 . . . . 5 dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
10 dmres 6021 . . . . 5 dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*)
11 ovolf 25502 . . . . . . 7 vol*:𝒫 ℝ⟶(0[,]+∞)
1211fdmi 6739 . . . . . 6 dom vol* = 𝒫 ℝ
1312ineq2i 4210 . . . . 5 ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
149, 10, 133eqtri 2758 . . . 4 dom vol = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
15 dfrab2 4312 . . . 4 {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
1614, 15eqtr4i 2757 . . 3 dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}
177, 16elrab2 3684 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
18 reex 11249 . . . 4 ℝ ∈ V
1918elpw2 5352 . . 3 (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)
20 ffn 6728 . . . . . . 7 (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ)
21 elpreima 7071 . . . . . . 7 (vol* Fn 𝒫 ℝ → (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
2211, 20, 21mp2b 10 . . . . . 6 (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))
2322imbi1i 348 . . . . 5 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
24 impexp 449 . . . . 5 (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2523, 24bitri 274 . . . 4 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2625ralbii2 3079 . . 3 (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
2719, 26anbi12i 626 . 2 ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2817, 27bitri 274 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {cab 2703  wral 3051  {crab 3419  cdif 3944  cin 3946  wss 3947  𝒫 cpw 4607  ccnv 5681  dom cdm 5682  cres 5684  cima 5685   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158   + caddc 11161  +∞cpnf 11295  [,]cicc 13381  vol*covol 25482  volcvol 25483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-icc 13385  df-fz 13539  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-ovol 25484  df-vol 25485
This theorem is referenced by:  ismbl2  25547  mblss  25551  mblsplit  25552  cmmbl  25554  shftmbl  25558  voliunlem2  25571
  Copyright terms: Public domain W3C validator